Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxicol Sci ; 142(1): 298-310, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25159132

RESUMO

The dysregulation of phosphatidylinositol 3-kinase (PI3K)-dependent pathways is implicated in several human cancers making it an attractive target for small molecule PI3K inhibitors. A series of potent pyridyltriazine-containing inhibitors of class Ia PI3Ks were synthesized and a subset of compounds was evaluated in exploratory repeat-dose rat toxicology studies. Daily oral dosing of compound 1: in Sprague Dawley rats for four consecutive days was associated with hepatobiliary toxicity that included biliary epithelial hyperplasia and hypertrophy, periductular edema, biliary stasis, and acute peribiliary inflammatory infiltrates. These histological changes were associated with clinical pathology changes that included increased serum liver enzymes, total bile acids, and bilirubin. The predominant clearance pathway of 1: was shown in vitro and in a bile-duct cannulated rat (14)C-ADME study to be P450-mediated oxidative metabolism. An O-demethylated pyridine metabolite, M3: , was identified as a candidate proximal metabolite that caused the hepatotoxicity. Co-administration of the pan-P450 inhibitor 1-aminobenzotriazole with 1: to rats significantly reduced the formation of M3: and prevented liver toxicity, whereas direct administration of M3: reproduced the toxicity. Structural changes were introduced to 1: to make the methoxypyridine ring less susceptible to P450 oxidation (compound 2: ), and addition of a methyl group to the benzylic carbon (compound 3: ) improved the pharmacokinetic profile. These changes culminated in the successful design of a clinical candidate 3: (AMG 511) that was devoid of liver toxicity in a 14-day rat toxicity study. Herein, we describe how a metabolism-based structure-activity relationship analysis allowed for the successful identification of a PI3K inhibitor devoid of off-target toxicity.


Assuntos
Sistema Biliar/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Sistema Enzimático do Citocromo P-450/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Piridinas/toxicidade , Bibliotecas de Moléculas Pequenas/toxicidade , Triazinas/toxicidade , Animais , Sistema Biliar/enzimologia , Sistema Biliar/patologia , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Feminino , Espectrometria de Massas , Taxa de Depuração Metabólica , Metilação , Estrutura Molecular , Piridinas/química , Piridinas/farmacocinética , Ratos Sprague-Dawley , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacocinética , Distribuição Tecidual , Testes de Toxicidade , Triazinas/química , Triazinas/farmacocinética
2.
J Med Chem ; 55(17): 7796-816, 2012 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-22897589

RESUMO

The phosphoinositide 3-kinase family catalyzes the phosphorylation of phosphatidylinositol-4,5-diphosphate to phosphatidylinositol-3,4,5-triphosphate, a secondary messenger which plays a critical role in important cellular functions such as metabolism, cell growth, and cell survival. Our efforts to identify potent, efficacious, and orally available phosphatidylinositol 3-kinase (PI3K) inhibitors as potential cancer therapeutics have resulted in the discovery of 4-(2-((6-methoxypyridin-3-yl)amino)-5-((4-(methylsulfonyl)piperazin-1-yl)methyl)pyridin-3-yl)-6-methyl-1,3,5-triazin-2-amine (1). In this paper, we describe the optimization of compound 1, which led to the design and synthesis of pyridyltriazine 31, a potent pan inhibitor of class I PI3Ks with a superior pharmacokinetic profile. Compound 31 was shown to potently block the targeted PI3K pathway in a mouse liver pharmacodynamic model and inhibit tumor growth in a U87 malignant glioma glioblastoma xenograft model. On the basis of its excellent in vivo efficacy and pharmacokinetic profile, compound 31 was selected for further evaluation as a clinical candidate and was designated AMG 511.


Assuntos
Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Triazinas/farmacologia , Cristalografia por Raios X , Modelos Moleculares , Inibidores de Proteínas Quinases/química
3.
Chem Res Toxicol ; 24(5): 677-86, 2011 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-21395287

RESUMO

Compounds 1 (N1-(3-ethynylphenyl)-6-methyl-N5-(3-(6-(methylamino)pyrimidin-4-yl)pyridin-2-yl) isoquinoline-1,5-diamine) and 2 (N-(3-ethynylphenyl)-6,7-bis(2-methoxyethoxy)quinazolin-4-amine; Erlotinib/Tarceva) are kinase inhibitors that contain a terminal phenyl acetylene moiety. When incubated in the presence of P450 and NADPH, the anticipated phenyl acetic acid metabolite was formed. When 10 mM of N-acetyl-l-cysteine was added to the incubation mixtures, the phenyl acetic acid product was reduced and at 25 mM or higher concentration of NAC, formation of the phenyl acetic acid was abolished. Instead, the phenyl acetylene moiety lost a carbon and formed a benzaldehyde product. Other oxidation products incorporating one or more equivalents of NAC were also observed. The identities of the metabolites were characterized by MS and NMR. Addition of deferoxamine or ascorbic acid diminished the formation of the NAC influenced products. Similar products were also observed when 1 or 2 were incubated in P450 reactions supplemented with GSH, in Fenton reactions supplemented with NAC or GSH, and in peroxidase reactions supplemented with NAC. We propose the thiols act as a pro-oxidant readily undergoing a one-electron oxidation to form thiyl radicals which in turn initiates the formation of other peroxy radicals that drive the reaction to the observed products. These in vitro findings suggest that one-electron oxidation of thiols may promote the cooxidation of xenobiotic substrates.


Assuntos
Acetilcisteína/metabolismo , Acetileno/metabolismo , Benzaldeídos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Glutationa/metabolismo , Animais , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Bovinos , Quelantes/farmacologia , Desferroxamina/farmacologia , Cães , Humanos , Masculino , Oxirredução , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA