Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Am Heart Assoc ; 13(13): e033558, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38904226

RESUMO

BACKGROUND: The incidental use of statins during radiation therapy has been associated with a reduced long-term risk of developing atherosclerotic cardiovascular disease. We examined whether irradiation causes chronic vascular injury and whether short-term administration of statins during and after irradiation is sufficient to prevent chronic injury compared with long-term administration. METHODS AND RESULTS: C57Bl/6 mice were pretreated with pravastatin for 72 hours and then exposed to 12 Gy X-ray head-and-neck irradiation. Pravastatin was then administered either for an additional 24 hours or for 1 year. Carotid arteries were tested for vascular reactivity, altered gene expression, and collagen deposition 1 year after irradiation. Treatment with pravastatin for 24 hours after irradiation reduced the loss of endothelium-dependent vasorelaxation and protected against enhanced vasoconstriction. Expression of markers associated with inflammation (NFκB p65 [phospho-nuclear factor kappa B p65] and TNF-α [tumor necrosis factor alpha]) and with oxidative stress (NADPH oxidases 2 and 4) were lowered and subunits of the voltage and Ca2+ activated K+ BK channel (potassium calcium-activated channel subfamily M alpha 1 and potassium calcium-activated channel subfamily M regulatory beta subunit 1) in the carotid artery were modulated. Treatment with pravastatin for 1 year after irradiation completely reversed irradiation-induced changes. CONCLUSIONS: Short-term administration of pravastatin is sufficient to reduce chronic vascular injury at 1 year after irradiation. Long-term administration eliminates the effects of irradiation. These findings suggest that a prospective treatment strategy involving statins could be effective in patients undergoing radiation therapy. The optimal duration of treatment in humans has yet to be determined.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Pravastatina , Animais , Pravastatina/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Fatores de Tempo , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/efeitos da radiação , Vasodilatação/efeitos dos fármacos , Vasodilatação/efeitos da radiação , Masculino , NADPH Oxidase 2/metabolismo , NADPH Oxidase 2/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator de Transcrição RelA/metabolismo , NADPH Oxidases/metabolismo , Camundongos , Lesões Experimentais por Radiação/prevenção & controle , Lesões Experimentais por Radiação/metabolismo , Lesões Experimentais por Radiação/tratamento farmacológico , Esquema de Medicação , Artérias Carótidas/efeitos da radiação , Artérias Carótidas/efeitos dos fármacos , Doença Crônica , Modelos Animais de Doenças , NADPH Oxidase 4
2.
bioRxiv ; 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37790532

RESUMO

Background: The incidental use of statins during radiation therapy has been associated with a reduced long-term risk of developing atherosclerotic cardiovascular disease. Objectives: Determine if irradiation causes chronic vascular injury and whether short-term administration of statins during and after irradiation is sufficient to prevent chronic injury compared to long-term administration. Methods: C57Bl/6 mice were pretreated with pravastatin for 72 hours and then exposed to 12 Gy x-ray head-and-neck irradiation. Subsequently, they received pravastatin either for one additional day or for one year. Carotid arteries were tested for vascular reactivity and altered gene expression one year after irradiation. Results: Treatment with pravastatin for 24 hours reduced the loss of endothelium-dependent vasorelaxation and protected against enhanced vasoconstriction after IR. It reduced the expression of some markers associated with inflammation and oxidative stress and modulated that of subunits of the voltage and Ca2+ activated K+ (BK) channel in the carotid artery one year after irradiation. Treatment with pravastatin for one year completely reversed the changes caused by irradiation. Conclusions: In mice, short-term administration of pravastatin is sufficient to reduce chronic vascular injury after irradiation. Long-term administration eliminates the effects of irradiation. These findings suggest that a prospective treatment strategy involving statins could be effective in patients undergoing radiation therapy. The optimal duration of treatment in humans has yet to be determined.

3.
Front Cardiovasc Med ; 10: 1133315, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37404737

RESUMO

Background: The incidental use of statins during radiation therapy has been associated with a reduced long-term risk of developing atherosclerotic cardiovascular disease. However, the mechanisms by which statins protect the vasculature from irradiation injury remain poorly understood. Objectives: Identify the mechanisms by which the hydrophilic and lipophilic statins pravastatin and atorvastatin preserve endothelial function after irradiation. Methods: Cultured human coronary and umbilical vein endothelial cells irradiated with 4 Gy and mice subjected to 12 Gy head-and-neck irradiation were pretreated with statins and tested for endothelial dysfunction, nitric oxide production, oxidative stress, and various mitochondrial phenotypes at 24 and 240 h after irradiation. Results: Both pravastatin (hydrophilic) and atorvastatin (lipophilic) were sufficient to prevent the loss of endothelium-dependent relaxation of arteries after head-and-neck irradiation, preserve the production of nitric oxide by endothelial cells, and suppress the cytosolic reactive oxidative stress associated with irradiation. However, only pravastatin inhibited irradiation-induced production of mitochondrial superoxide; damage to the mitochondrial DNA; loss of electron transport chain activity; and expression of inflammatory markers. Conclusions: Our findings reveal some mechanistic underpinnings of the vasoprotective effects of statins after irradiation. Whereas both pravastatin and atorvastatin can shield from endothelial dysfunction after irradiation, pravastatin additionally suppresses mitochondrial injury and inflammatory responses involving mitochondria. Clinical follow-up studies will be necessary to determine whether hydrophilic statins are more effective than their lipophilic counterparts in reducing the risk of cardiovascular disease in patients undergoing radiation therapy.

4.
Arterioscler Thromb Vasc Biol ; 42(9): 1121-1136, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35899616

RESUMO

BACKGROUND: Radiation therapy strongly increases the risk of atherosclerotic vascular disease, such as carotid stenosis. Radiation induces DNA damage, in particular in mitochondria, but the upstream and downstream signaling events are poorly understood. The objective of this study was to define such mechanisms. METHODS: Endothelial-specific MCU (mitochondrial Ca2+ uniporter) knockout and C57Bl6/J mice with or without a preinfusion of a mitoTEMPO (mitochondrial reactive oxygen species [ROS] scavenger) were exposed to a single dose of cranial irradiation. 24, and 240 hours postirradiation, vascular reactivity, endothelial function, and mitochondrial integrity were assessed ex vivo and in vitro. RESULTS: In cultured human endothelial cells, irradiation with 4 Gy increased cytosolic Ca2+ transients and the mitochondrial Ca2+ concentration ([Ca2+]mt) and activated MCU. These outcomes correlated with increases in mitochondrial ROS (mtROS), loss of NO production, and sustained damage to mitochondrial but not nuclear DNA. Moreover, irradiation impaired activity of the ETC (electron transport chain) and the transcription of ETC subunits encoded by mitochondrial DNA (mtDNA). Knockdown or pharmacological inhibition of MCU blocked irradiation-induced mtROS production, mtDNA damage, loss of NO production, and impairment of ETC activity. Similarly, the pretreatment with mitoTEMPO, a scavenger of mtROS, reduced irradiation-induced Ca2+ entry, and preserved both the integrity of the mtDNA and the production of NO, suggesting a feed-forward loop involving [Ca2+]m and mtROS. Enhancement of DNA repair in mitochondria, but not in the nucleus, was sufficient to block prolonged mtROS elevations and maintain NO production. Consistent with the findings from cultured cells, in C57BL/6J mice, head and neck irradiation decreased endothelium-dependent vasodilation, and mtDNA integrity in the carotid artery after irradiation. These effects were prevented by endothelial knockout of MCU or infusion with mitoTEMPO. CONCLUSIONS: Irradiation-induced damage to mtDNA is driven by MCU-dependent Ca2+ influx and the generation of mtROS. Such damage leads to reduced transcription of mitochondrial genes and activity of the ETC, promoting sustained mtROS production that induces endothelial dysfunction. Our findings suggest that targeting MCU and mtROS might be sufficient to mitigate irradiation-induced vascular disease.


Assuntos
Células Endoteliais , Doenças Vasculares , Animais , Cálcio , Endotélio , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias , Espécies Reativas de Oxigênio
5.
Obesity (Silver Spring) ; 30(4): 893-901, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35253407

RESUMO

OBJECTIVE: In this study, the effect of lomitapide, a microsomal triglyceride transfer protein inhibitor, on the cardiovascular function in obesity was investigated. METHODS: Eight-week-old C57BL/6 mice were fed with high-fat diet for 12 weeks in the presence and absence of lomitapide. Lomitapide was administered by gavage (1 mg/kg/d) during the last 2 weeks of high-fat feeding. Body weight, blood glucose, body composition, and lipid profile were determined. Vascular function and endothelial function markers were studied in the aorta and mesenteric resistance arteries. RESULTS: Lomitapide treatment reduced body weight in mice with obesity. Blood glucose, percentage of fat mass, total cholesterol, and low-density lipoprotein levels were significantly reduced, and the percentage of lean mass was significantly increased after lomitapide treatment. The vascular response to sodium nitroprusside in the aorta and mesenteric arteries was similar among groups. However, the vascular response to acetylcholine was improved in the treated group. This was associated with decreased levels of vascular endoplasmic reticulum stress, inflammation, and oxidative stress. CONCLUSIONS: Treatment with lomitapide attenuated the increase in body weight in mice with obesity and restored the lipid profile and vascular function. These effects were accompanied by a decrease in inflammation and oxidative stress.


Assuntos
Anticolesterolemiantes , Hiperlipoproteinemia Tipo II , Animais , Anticolesterolemiantes/farmacologia , Benzimidazóis , Glicemia , Proteínas de Transporte , Dieta Hiperlipídica , Hiperlipoproteinemia Tipo II/metabolismo , Hiperlipoproteinemia Tipo II/terapia , Inflamação , Lipídeos , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico
6.
Cureus ; 13(9): e18194, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34589374

RESUMO

Anticancer drugs play an important role in reducing mortality rates and increasing life expectancy in cancer patients. Treatments include monotherapy and/or a combination of radiation therapy, chemotherapy, hormone therapy, or immunotherapy. Despite great advances in drug development, some of these treatments have been shown to induce cardiotoxicity directly affecting heart function and structure, as well as accelerating the development of cardiovascular disease. Such side effects restrict treatment options and can negatively affect disease management. Consequently, when managing cancer patients, it is vital to understand the mechanisms causing cardiotoxicity to better monitor heart function, develop preventative measures against cardiotoxicity, and treat heart failure when it occurs in this patient population. This review discusses the role and mechanism of major chemotherapy agents with principal cardiovascular complications in cancer patients.

7.
Sci Rep ; 9(1): 7623, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-31110224

RESUMO

Coronary artery disease (CAD) is a leading cause of death worldwide and frequently associated with mitochondrial dysfunction. Detailed understanding of abnormalities in mitochondrial function that occur in patients with CAD is lacking. We evaluated mitochondrial damage, energy production, and mitochondrial complex activity in human non-CAD and CAD hearts. Fresh and frozen human heart tissue was used. Cell lysate or mitochondria were isolated using standard techniques. Mitochondrial DNA (mtDNA), NAD + and ATP levels, and mitochondrial oxidative phosphorylation capacity were evaluated. Proteins critical to the regulation of mitochondrial metabolism and function were also evaluated in tissue lysates. PCR analysis revealed an increase in mtDNA lesions and the frequency of mitochondrial common deletion, both established markers for impaired mitochondrial integrity in CAD compared to non-CAD patient samples. NAD+ and ATP levels were significantly decreased in CAD subjects compared to Non-CAD (NAD+ fold change: non-CAD 1.00 ± 0.17 vs. CAD 0.32 ± 0.12* and ATP fold change: non-CAD 1.00 ± 0.294 vs. CAD 0.01 ± 0.001*; N = 15, P < 0.005). We observed decreased respiration control index in CAD tissue and decreased activity of complexes I, II, and III. Expression of ETC complex subunits and respirasome formation were increased; however, elevations in the de-active form of complex I were observed in CAD. We observed a corresponding increase in glycolytic flux, indicated by a rise in pyruvate kinase and lactate dehydrogenase activity, indicating a compensatory increase in glycolysis for cellular energetics. Together, these results indicate a shift in mitochondrial metabolism from oxidative phosphorylation to glycolysis in human hearts subjects with CAD.


Assuntos
Doença da Artéria Coronariana/metabolismo , Coração/fisiopatologia , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , DNA Mitocondrial/metabolismo , Metabolismo Energético/fisiologia , Feminino , Glicólise/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , NAD/metabolismo , Oxirredução , Fosforilação Oxidativa
8.
Int J Mol Sci ; 19(3)2018 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-29534446

RESUMO

Although chemotherapeutics can be highly effective at targeting malignancies, their ability to trigger cardiovascular morbidity is clinically significant. Chemotherapy can adversely affect cardiovascular physiology, resulting in the development of cardiomyopathy, heart failure and microvascular defects. Specifically, anthracyclines are known to cause an excessive buildup of free radical species and mitochondrial DNA damage (mtDNA) that can lead to oxidative stress-induced cardiovascular apoptosis. Therefore, oncologists and cardiologists maintain a network of communication when dealing with patients during treatment in order to treat and prevent chemotherapy-induced cardiovascular damage; however, there is a need to discover more accurate biomarkers and therapeutics to combat and predict the onset of cardiovascular side effects. Telomerase, originally discovered to promote cellular proliferation, has recently emerged as a potential mechanism to counteract mitochondrial defects and restore healthy mitochondrial vascular phenotypes. This review details mechanisms currently used to assess cardiovascular damage, such as C-reactive protein (CRP) and troponin levels, while also unearthing recently researched biomarkers, including circulating mtDNA, telomere length and telomerase activity. Further, we explore a potential role of telomerase in the mitigation of mitochondrial reactive oxygen species and maintenance of mtDNA integrity. Telomerase activity presents a promising indicator for the early detection and treatment of chemotherapy-derived cardiac damage.


Assuntos
Antineoplásicos/efeitos adversos , Doenças Cardiovasculares/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Estresse Oxidativo , Telomerase/metabolismo , Animais , Biomarcadores/metabolismo , Cardiotoxicidade/diagnóstico , Cardiotoxicidade/etiologia , Cardiotoxicidade/metabolismo , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/etiologia , Humanos , Mitocôndrias Cardíacas/metabolismo
9.
Pharmacol Res ; 111: 422-433, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27394166

RESUMO

Aging, cancer, and chronic disease have remained at the forefront of basic biological research for decades. Within this context, significant attention has been paid to the role of telomerase, the enzyme responsible for lengthening telomeres, the nucleotide sequences located at the end of chromosomes found in the nucleus. Alterations in telomere length and telomerase activity are a common denominator to the underlying pathology of these diseases. While nuclear-specific, telomere-lengthening effects of telomerase impact cellular/organismal aging and cancer development, non-canonical, extra-nuclear, and non-telomere-lengthening contributions of telomerase have only recently been described and their exact physiological implications are ill defined. Although the mechanism remains unclear, recent reports reveal that the catalytic subunit of telomerase, telomerase reverse transcriptase (TERT), regulates levels of mitochondrial-derived reactive oxygen species (mtROS), independent of its established role in the nucleus. Telomerase inhibition has been the target of chemotherapy (directed or indirectly) for over a decade now, yet no telomerase inhibitor is FDA approved and few are currently in late-stage clinical trials, possibly due to underappreciation of the distinct extra-nuclear functions of telomerase. Moreover, evaluation of telomerase-specific therapies is largely limited to the context of chemotherapy, despite reports of the beneficial effects of telomerase activation in the cardiovascular system in relation to such processes as endothelial dysfunction and myocardial infarction. Thus, there is a need for better understanding of telomerase-focused cell and organism physiology, as well as development of telomerase-specific therapies in relation to cancer and extension of these therapies to cardiovascular pathologies. This review will detail findings related to telomerase and evaluate its potential to serve as a therapeutic target.


Assuntos
Antineoplásicos/uso terapêutico , Fármacos Cardiovasculares/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Ativadores de Enzimas/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Neoplasias/tratamento farmacológico , Telomerase/antagonistas & inibidores , Animais , Doenças Cardiovasculares/enzimologia , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/patologia , Ativação Enzimática , Humanos , Terapia de Alvo Molecular , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/patologia , Transdução de Sinais/efeitos dos fármacos , Telomerase/metabolismo , Homeostase do Telômero/efeitos dos fármacos , Encurtamento do Telômero/efeitos dos fármacos
10.
Biochim Biophys Acta ; 1853(10 Pt A): 2404-10, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26036345

RESUMO

We previously determined that augmented EGFR tyrosine kinase (EGFRtk) impairs vascular function in type 2 diabetic mouse (TD2). Here we determined that EGFRtk causes vascular dysfunction through NADPH oxidase activity in TD2. Mesenteric resistance arteries (MRA) from C57/BL6 and db-/db- mice were mounted in a wired myograph and pre-incubated for 1h with either EGFRtk inhibitor (AG1478) or exogenous EGF. The inhibition of EGFRtk did not affect the contractile response to phenylephrine-(PE) and thromboxane-(U46619) or endothelium-dependent relaxation (EDR) to acetylcholine in MRA from control group. However, in TD2 mice, AG1478 reduced the contractile response to U46619, improved vasodilatation and reduced p22phox-NADPH expression, but had no effect on the contractile response to PE. The incubation of MRA with exogenous EGF potentiated the contractile response to PE in MRA from control and diabetic mice. However, EGF impaired the EDR and potentiated the vasoconstriction to U46619 only in the control group. Interestingly, NADPH oxidase inhibition in the presence of EGF restored the normal contraction to PE and improved the EDR but had no effect on the potentiated contraction to U46619. Vascular function improvement was associated with the rescue of eNOS and Akt and reduction in phosphorylated Rho-kinase, NOX4 mRNA levels, and NADPH oxidase activity. MRA from p47phox-/- mice incubated with EGF potentiated the contraction to U46619 but had no effect to PE or ACh responses. The present study provides evidence that augmented EGFRtk impairs vascular function by NADPH oxidase-dependent mechanism. Therefore, EGFRtk and oxidative stress should be potential targets to treat vascular dysfunction in TD2.


Assuntos
Grupo dos Citocromos b/metabolismo , Diabetes Mellitus Tipo 2/enzimologia , Angiopatias Diabéticas/enzimologia , Receptores ErbB/metabolismo , NADPH Oxidases/metabolismo , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Animais , Grupo dos Citocromos b/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/patologia , Receptores ErbB/genética , Camundongos , Camundongos Knockout , NADPH Oxidase 4 , NADPH Oxidases/genética , Fenilefrina/farmacologia , Quinazolinas/farmacologia , Tirfostinas/farmacologia , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/genética , Vasodilatação/efeitos dos fármacos , Vasodilatação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA