Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hepatol Commun ; 7(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38051537

RESUMO

BACKGROUND: HBV DNA integration into the host genome is frequently found in HBV-associated HCC tissues and is associated with hepatocarcinogenesis. Multiple detection methods, including hybrid capture-sequencing, have identified integration sites and provided clinical implications; however, each has advantages and disadvantages concerning sensitivity, cost, and throughput. Therefore, methods that can comprehensively and cost-effectively detect integration sites with high sensitivity are required. Here, we investigated the efficiency of RAISING (Rapid Amplification of Integration Site without Interference by Genomic DNA contamination) as a simple and inexpensive method to detect viral integration by amplifying HBV-integrated fragments using virus-specific primers covering the entire HBV genome. METHODS AND RESULTS: Illumina sequencing of RAISING products from HCC-derived cell lines (PLC/PRF/5 and Hep3B cells) identified HBV-human junction sequences as well as their frequencies. The HBV-human junction profiles identified using RAISING were consistent with those determined using hybrid capture-sequencing, and the representative junctions could be validated by junction-specific nested PCR. The comparison of these detection methods revealed that RAISING-sequencing outperforms hybrid capture-sequencing in concentrating junction sequences. RAISING-sequencing was also demonstrated to determine the sites of de novo integration in HBV-infected HepG2-NTCP cells, primary human hepatocytes, liver-humanized mice, and clinical specimens. Furthermore, we made use of xenograft mice subcutaneously engrafted with PLC/PRF/5 or Hep3B cells, and HBV-human junctions determined by RAISING-sequencing were detectable in the plasma cell-free DNA using droplet digital PCR. CONCLUSIONS: RAISING successfully profiles HBV-human junction sequences with smaller amounts of sequencing data and at a lower cost than hybrid capture-sequencing. This method is expected to aid basic HBV integration and clinical diagnosis research.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Vírus da Hepatite B/genética , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , DNA Viral/genética , Hepatócitos/metabolismo
2.
Biochem Biophys Res Commun ; 675: 139-145, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37473528

RESUMO

Given that the current approved anti-hepatitis B virus (HBV) drugs suppress virus replication and improve hepatitis but cannot eliminate HBV from infected patients, new anti-HBV agents with different mode of action are urgently needed. In this study, we identified a semi-synthetic oxysterol, Oxy185, that can prevent HBV infection in a HepG2-based cell line and primary human hepatocytes. Mechanistically, Oxy185 inhibited the internalization of HBV into cells without affecting virus attachment or replication. We also found that Oxy185 interacted with an HBV entry receptor, sodium taurocholate cotransporting polypeptide (NTCP), and inhibited the oligomerization of NTCP to reduce the efficiency of HBV internalization. Consistent with this mechanism, Oxy185 also inhibited the hepatitis D virus infection, which relies on NTCP-dependent internalization, but not hepatitis A virus infection, and displayed pan-genotypic anti-HBV activity. Following oral administration in mice, Oxy185 showed sustained accumulation in the livers of the mice, along with a favorable liver-to-plasma ratio. Thus, Oxy185 is expected to serve as a useful tool compound in proof-of-principle studies for HBV entry inhibitors with this novel mode of action.


Assuntos
Hepatite B , Simportadores , Humanos , Camundongos , Animais , Vírus da Hepatite B/fisiologia , Internalização do Vírus , Hepatite B/metabolismo , Hepatócitos/metabolismo , Células Hep G2 , Vírus Delta da Hepatite/metabolismo , Simportadores/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo
3.
Liver Int ; 43(8): 1677-1690, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37312620

RESUMO

BACKGROUND AND AIMS: The future development of hepatocellular carcinoma (HCC) in patients after sustained virologic response (SVR) is an important issue. The purposes of this study were to investigate pathological alterations in organelle of the liver of SVR patients and to characterize organelle abnormalities that may be related to carcinogenesis after SVR. METHODS: The ultrastructure of liver biopsy specimens from patients with chronic hepatitis C (CHC) and SVR were compared to cell and mouse models and assessed semi-quantitatively using transmission electron microscopy. RESULTS: Hepatocytes in patients with CHC showed abnormalities in the nucleus, mitochondria, endoplasmic reticulum, lipid droplet, and pericellular fibrosis, comparable to those seen in hepatitis C virus (HCV)-infected mice and cells. DAA treatment significantly reduced organelle abnormalities such as the nucleus, mitochondria, and lipid droplet in the hepatocytes of patients and mice after SVR, and cured cells, but it did not change dilated/degranulated endoplasmic reticulum and pericellular fibrosis in patients and mice after SVR. Further, samples from patients with a post-SVR period of >1 year had significantly larger numbers of abnormalities in the mitochondria and endoplasmic reticulum than those of <1 year. A possible cause of organelle abnormalities in patients after SVR could be oxidative stress of the endoplasmic reticulum and mitochondria associated with abnormalities of the vascular system due to fibrosis. Interestingly, abnormal endoplasmic reticulum was associated with patients with HCC for >1 year after SVR. CONCLUSIONS: These results indicate that patients with SVR exhibit a persistent disease state and require long-term follow-up to detect early signs of carcinogenesis.


Assuntos
Carcinoma Hepatocelular , Hepatite C Crônica , Hepatite C , Neoplasias Hepáticas , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Antivirais/uso terapêutico , Neoplasias Hepáticas/patologia , Hepacivirus , Hepatite C/tratamento farmacológico , Hepatite C Crônica/complicações , Hepatite C Crônica/tratamento farmacológico , Resposta Viral Sustentada , Cirrose Hepática/complicações , Organelas/patologia , Carcinogênese/patologia
4.
PLoS One ; 17(9): e0274283, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36137152

RESUMO

In recent years, new direct-acting antivirals for hepatitis C virus (HCV) have been approved, but hepatitis C continues to pose a threat to human health. It is important to develop neutralizing anti-HCV antibodies to prevent medical and accidental infection, such as might occur via liver transplantation of chronic HCV patients and needle-stick accidents in the clinic. In this study, we sought to obtain anti-HCV antibodies using phage display screening. Phages displaying human hepatocellular carcinoma patient-derived antibodies were screened by 4 rounds of biopanning with genotype-1b and -2a HCV envelope E2 protein adsorbed to magnetic beads. The three antibodies obtained from this screen had reactivity against E2 proteins derived from both genotype-1b and -2a strains. However, in epitope analysis, these antibodies did not recognize linear peptides from an overlapping E2 epitope peptide library, and did not bind to denatured E2 protein. In addition, these antibodies showed cross-genotypic neutralizing activity against genotype-1a, -1b, -2a, and -3a cell culture-generated infectious HCV particles (HCVcc). Moreover, emergence of viral escape mutants was not observed after repeated rounds of passaging of HCV-infected cells in the presence of one such antibody, e2d066. Furthermore, injection of the e2d066 antibody into human hepatocyte-transplanted immunodeficient mice inhibited infection by J6/JFH-1 HCVcc. In conclusion, we identified conformational epitope-recognizing, cross-genotypic neutralizing antibodies using phage display screening. Notably, e2d066 antibody did not select for escape mutant emergence in vitro and demonstrated neutralizing activity in vivo. Our results suggested that these antibodies may serve as prophylactic and therapeutic agents.


Assuntos
Hepatite C Crônica , Hepatite C , Animais , Anticorpos Monoclonais , Anticorpos Neutralizantes , Antivirais/metabolismo , Epitopos , Hepacivirus , Anticorpos Anti-Hepatite C , Humanos , Camundongos , Biblioteca de Peptídeos , Proteínas do Envelope Viral
5.
Viruses ; 14(4)2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35458494

RESUMO

Current anti-hepatitis B virus (HBV) drugs are suppressive but not curative for HBV infection, so there is considerable demand for the development of new anti-HBV agents. In this study, we found that fungus-derived exophillic acid inhibits HBV infection with a 50% maximal inhibitory concentration (IC50) of 1.1 µM and a 50% cytotoxic concentration (CC50) of >30 µM in primary human hepatocytes. Exophillic acid inhibited preS1-mediated viral attachment to cells but did not affect intracellular HBV replication. Exophillic acid appears to target the host cells to reduce their susceptibility to viral attachment rather than acting on the viral particles. We found that exophillic acid interacted with the HBV receptor, sodium taurocholate cotransporting polypeptide (NTCP). Exophillic acid impaired the uptake of bile acid, the original function of NTCP. Consistent with our hypothesis that it affects NTCP, exophillic acid inhibited infection with HBV and hepatitis D virus (HDV), but not that of hepatitis C virus. Moreover, exophillic acid showed a pan-genotypic anti-HBV effect. We thus identified the anti-HBV/HDV activity of exophillic acid and revealed its mode of action. Exophillic acid is expected to be a potential new lead compound for the development of antiviral agents.


Assuntos
Hepatite B , Internalização do Vírus , Benzoatos , Galactosídeos , Células Hep G2 , Vírus da Hepatite B/fisiologia , Vírus Delta da Hepatite/fisiologia , Hepatócitos , Humanos
6.
Antiviral Res ; 199: 105266, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35196560

RESUMO

Direct-acting antivirals (DAAs) have been introduced for the treatment of hepatitis C virus (HCV); however, there is still no available vaccine for preventing HCV infection. We previously reported on a Japanese encephalitis virus (JEV) subviral particle (SVP)-based vaccine with insertion of the HCV E2 neutralization epitope at three positions (SVP-E2/Tri). In this study, we utilized this SVP platform for DNA immunization. In addition, we explored further sites permitting the insertion of HCV epitopes without impairing viral assembly and secretion to elicit higher titers of neutralizing antibodies, and we identified three new positions for foreign epitope insertion. Successful secretion of SVPs with the insertion of HCV epitopes at five positions (SVP-E2/Pent) was seen from transfected cells. Compared to SVP-E2/Tri, sera from mice immunized with the plasmid expressing SVP-E2/Pent showed more neutralization activity against HCV, and less neutralization activity against JEV, suggesting that the additional insertion of HCV epitopes contributed to the induction of antibodies against the inserted peptide, whereas the neutralizing epitopes against JEV were disrupted. This study provides a potentially effective novel DNA vaccine platform.


Assuntos
Hepatite C Crônica , Hepatite C , Vacinas de DNA , Vacinas contra Hepatite Viral , Animais , Anticorpos Neutralizantes , Antivirais , Epitopos , Hepacivirus/genética , Anticorpos Anti-Hepatite C , Camundongos , Proteínas do Envelope Viral/genética
7.
J Invest Dermatol ; 142(7): 1793-1803.e11, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34968501

RESUMO

Merkel cell polyomavirus (MCPyV) is the causative agent of an aggressive skin tumor, Merkel cell carcinoma. The viral genome is integrated into the tumor genome and harbors nonsense mutations in the helicase domain of large T antigen. However, the molecular mechanisms by which the viral genome gains the tumor-specific mutations remain to be elucidated. Focusing on host cytosine deaminases APOBEC3s, we find that A3A, A3B, or A3G introduces A3-specific mutations into episomal MCPyV genomes in MCPyV-replicating 293-derivative cells. Sequence analysis of MCPyV genomes retrieved from the NCBI database revealed a decrease of TpC dinucleotide, a preferred target for A3A and A3B, in the 3'-region of the large T antigen‒coding sequence. The viral DNA isolated from tumors contained mutated cytosines, with a remarkable bias toward TpC dinucleotide. Analysis of publicly available microarray data showed that expression of IFN-γ and cytotoxic T lymphocyte markers was positively correlated with the A3A, A3B, and A3G levels in MCPyV-positive but not in MCPyV-negative tumors. Finally, IFN-γ treatment induced A3B and A3G expression in the MCPyV-positive Merkel cell carcinoma cell line MS-1. These results suggest that the IFN-γ-A3B axis plays pivotal roles in evolutionally shaping MCPyV genomic sequences and in generating tumor-specific large T antigen mutations during development of Merkel cell carcinoma.


Assuntos
Carcinoma de Célula de Merkel , Citidina Desaminase , Poliomavírus das Células de Merkel , Infecções por Polyomavirus , Neoplasias Cutâneas , Infecções Tumorais por Vírus , Antígenos Virais de Tumores/genética , Antígenos Virais de Tumores/metabolismo , Citidina Desaminase/genética , Humanos , Interferon gama/metabolismo , Poliomavírus das Células de Merkel/genética , Antígenos de Histocompatibilidade Menor , Mutagênese , Neoplasias Cutâneas/genética
8.
J Virol ; 95(24): e0093821, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34613794

RESUMO

Sodium taurocholate cotransporting polypeptide (NTCP) is a receptor that is essential for hepatitis B virus (HBV) entry into the host cell. A number of HBV entry inhibitors targeting NTCP have been reported to date; these inhibitors have facilitated a mechanistic analysis of the viral entry process. However, the mechanism of HBV internalization into host cells after interaction of virus with NTCP remains largely unknown. Recently, we reported that troglitazone, a thiazolidinedione derivative, specifically inhibits both HBV internalization and NTCP oligomerization, resulting in inhibition of HBV infection. Here, using troglitazone as a chemical probe to investigate entry process, the contribution of NTCP oligomerization to HBV internalization was evaluated. Using surface plasmon resonance and transporter kinetics, we found that troglitazone directly interacts with NTCP and noncompetitively interferes with NTCP-mediated bile acid uptake, suggesting that troglitazone allosterically binds to NTCP, rather than to the bile acid-binding pocket. Additionally, alanine scanning mutagenesis showed that a mutation at phenylalanine 274 of NTCP (F274A) caused a loss of HBV susceptibility and disrupted both the oligomerization of NTCP and HBV internalization without affecting viral attachment to the cell surface. An inhibitor of the interaction between NTCP and epidermal growth factor receptor (EGFR), another host cofactor essential for HBV internalization, impeded NTCP oligomerization. Meanwhile, coimmunoprecipitation analysis revealed that neither troglitazone nor the F274A mutation in NTCP affects the NTCP-EGFR interaction. These findings suggest that NTCP oligomerization is initiated downstream of the NTCP-EGFR interaction and then triggers HBV internalization. This study provides significant insight into the HBV entry mechanisms. IMPORTANCE Hepatitis B virus (HBV) infection is mediated by a specific interaction with sodium taurocholate cotransporting polypeptide (NTCP), a viral entry receptor. Although the virus-receptor interactions are believed to trigger viral internalization into host cells, the exact molecular mechanisms of HBV internalization are not understood. In this study, we revealed the mode of action whereby troglitazone, a specific inhibitor of HBV internalization, impedes NTCP oligomerization and identified NTCP phenylalanine 274 as a residue essential for this oligomerization. We further analyzed the association between NTCP oligomerization and HBV internalization, a process that is mediated by epidermal growth factor receptor (EGFR), another essential host cofactor for HBV internalization. Our study provides critical information on the mechanism of HBV entry and suggests that oligomerization of the viral receptor serves as an attractive target for drug discovery.


Assuntos
Vírus da Hepatite B/fisiologia , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Multimerização Proteica , Receptores Virais/metabolismo , Simportadores/metabolismo , Internalização do Vírus/efeitos dos fármacos , Transporte Biológico , Receptores ErbB/genética , Receptores ErbB/metabolismo , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Simportadores/genética , Troglitazona/farmacologia , Ligação Viral/efeitos dos fármacos
9.
Int J Biol Macromol ; 188: 147-159, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34371038

RESUMO

Hepatitis C virus (HCV) nonstructural protein NS4B is necessary for HCV replication. Our previous research found that NS4B-associated cellular proteins PREB and Surfeit 4 are involved in HCV replication. However, the molecular mechanism of HCV replication is not fully understood. Here we identified cellular ovarian cancer immunoreactive antigen domain containing 2 (OCIAD2) protein as a novel NS4B-associated HCV host cofactor by screening with small interfering RNA. Knockdown of OCIAD2 reduced significantly the HCV replication in a dose-dependent and genotype-independent manner. Further research showed that OCIAD2 was recruited into the HCV RNA replication complex by the interaction with NS4B. Interestingly, HCV replication induced OCIAD2 expression. In turn, overexpression of wild OCIAD2 also promoted virus replication whereas that of OCIAD2 mutant lacking the ability to bind NS4B exerted no effect on HCV replication. We also examined whether OCIAD2 interacted with other proteins participating in the HCV RNA replication complex including viral proteins NS5A, NS5B, and cellular proteins PREB, Surfeit 4. The results showed that OCIAD2 interacted with PREB and NS5A, but not NS5B or Surfeit 4. Our findings provide new insights into the function of OCIAD2 and HCV replication mechanism.


Assuntos
Hepacivirus/genética , Hepatite C/genética , Proteínas de Neoplasias/genética , Replicação Viral/genética , Linhagem Celular , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica/genética , Genótipo , Fatores de Troca do Nucleotídeo Guanina/genética , Hepacivirus/patogenicidade , Hepatite C/patologia , Hepatite C/virologia , Interações Hospedeiro-Patógeno/genética , Humanos , Proteínas de Membrana/genética , Provírus/genética , RNA Interferente Pequeno/genética , Fatores de Transcrição/genética , Proteínas não Estruturais Virais/genética
10.
Biochem Biophys Res Commun ; 567: 1-8, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34130179

RESUMO

Natural product-derived crude drugs are expected to yield an abundance of new drugs to treat infectious diseases. Hepatitis C virus (HCV) is an oncogenic virus that significantly impacts public health. In this study, we sought to identify anti-HCV compounds in extracts of natural products. A total of 110 natural compounds extracted from several herbal medicine plants were examined for antiviral activity against HCV. Using a Huh7-mCherry-NLS-IPS reporter system for HCV infection, we first performed a rapid screening for anti-HCV compounds extracted from crude drugs. The compounds threo-2,3-bis(4-hydroxy-3-methoxyphenyl)-3-butoxypropan-1-ol (#106) and medioresinol (#110), which were extracted from Crataegus cuneate, exhibited anti-HCV activity and significantly inhibited HCV production in a dose-dependent manner. Analyses using HCV pseudoparticle and subgenomic replicon systems indicated that compounds #106 and #110 specifically inhibit HCV RNA replication but not viral entry or translation. Interestingly, compound #106 also inhibited the replication and production of hepatitis A virus. Our findings suggest that C. cuneate is a new source for novel anti-hepatitis virus drug development.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Extratos Vegetais/farmacologia , Antivirais/química , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Crataegus/química , Hepacivirus/fisiologia , Humanos , Extratos Vegetais/química , Plantas Medicinais/química , Replicação Viral/efeitos dos fármacos
11.
Carcinogenesis ; 42(5): 672-684, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33617626

RESUMO

Hepatocellular carcinoma (HCC) developing after hepatitis C virus (HCV) eradication is a serious clinical concern. However, molecular basis for the hepatocarcinogenesis after sustained virologic response (SVR) remains unclear. In this study, we aimed to unveil the transcriptomic profile of post-SVR liver tissues and explore the molecules associated with post-SVR carcinogenesis. We analysed 90 RNA sequencing datasets, consisting of non-cancerous liver tissues including 20 post-SVR, 40 HCV-positive and 7 normal livers, along with Huh7 cell line specimens before and after HCV infection and eradication. Comparative analysis demonstrated that cell cycle- and mitochondrial function-associated pathways were altered only in HCV-positive non-cancerous liver tissues, whereas some cancer-related pathways were up-regulated in the non-cancerous liver tissues of both post-SVR and HCV-positive cases. The persistent up-regulation of carcinogenesis-associated gene clusters after viral clearance was reconfirmed through in vitro experiments, of which, CYR61, associated with liver fibrosis and carcinogenesis in several cancer types, was the top enriched gene and co-expressed with cell proliferation-associated gene modules. To evaluate whether this molecule could be a predictor of hepatocarcinogenesis after cure of HCV infection, we also examined 127 sera from independent HCV-positive cohorts treated with direct-acting antivirals (DAAs), including 60 post-SVR-HCC patients, and found that the elevated serum Cyr61 was significantly associated with early carcinogenesis after receiving DAA therapy. In conclusion, some oncogenic transcriptomic profiles are sustained in liver tissues after HCV eradication, which might be a molecular basis for the liver cancer development even after viral clearance. Among them, up-regulated CYR61 could be a possible biomarker for post-SVR-HCC.


Assuntos
Carcinoma Hepatocelular/genética , Proteína Rica em Cisteína 61/genética , Neoplasias Hepáticas/genética , Transcriptoma/genética , Carcinogênese/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Linhagem Celular Tumoral , Bases de Dados Genéticas , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Hepacivirus/patogenicidade , Hepatite C/genética , Hepatite C/patologia , Hepatite C/virologia , Humanos , Fígado/metabolismo , Fígado/patologia , Fígado/virologia , Cirrose Hepática/genética , Cirrose Hepática/patologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Masculino , RNA-Seq , Resposta Viral Sustentada
12.
J Virol ; 95(5)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33298539

RESUMO

Hepatitis B virus (HBV) infection is a major public health problem. Human hepatocytes are infected with HBV via binding between the preS1 region in the large envelope protein of HBV and sodium taurocholate cotransporting polypeptide. Although several monoclonal antibodies (MAbs) that recognize the receptor binding domain in preS1 and neutralize HBV infection have been isolated, details of neutralizing epitopes are not understood. In this study, we generated 13 MAbs targeting the preS1 receptor binding domain from preS1-specific memory B cells derived from DNA immunized mice. The MAbs were classified into three groups according to the epitope regions, designated epitopes I-III. A virus neutralization assay revealed that MAbs recognizing epitopes I and III neutralized HBV infection, suggesting that these domains are critical epitopes for viral neutralization. In addition, a neutralization assay against multiple genotypes of HBV revealed that epitope I is a semi-pangenotypic neutralizing epitope, whereas epitope III is a genotype-specific epitope. We also showed that neutralizing MAbs against preS1 could neutralize HBV bearing vaccine-induced escape mutation. These findings provide insight into novel immunoprophylaxis for the prevention and treatment of HBV infection.IMPORTANCE The HBV preS1 2-47 aa region (preS1/2-47) is essential for virus binding with sodium taurocholate cotransporting polypeptide. Several MAbs targeting preS1/2-47 have been reported to neutralize HBV infection; however, which region in preS1/2-47 contains the critical neutralizing epitope for HBV infection is unclear. Here, we generated several MAbs targeting preS1/2-47 and found that MAbs recognizing the N- or C-terminus of preS1/2-47 remarkably neutralized HBV infection. We further confirmed the neutralizing activity of anti-preS1 MAbs against HBV with vaccine escape mutation. These data clarified the relationship between the antibody epitope and the virus neutralizing activity and also suggested the potential ability of a vaccine antigen containing the preS1 region to overcome the weakness of current HB vaccines comprising the small S protein.

13.
Sci Rep ; 10(1): 20763, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33247161

RESUMO

Hepatitis B virus (HBV) is the major causative factor of chronic viral hepatitis, liver cirrhosis, and hepatocellular carcinoma. We previously demonstrated that a proinflammatory cytokine IL-1ß reduced the level of HBV RNA. However, the mechanism underlying IL-1ß-mediated viral RNA reduction remains incompletely understood. In this study, we report that immune regulator Monocyte chemotactic protein-1-induced protein 1 (MCPIP1) can reduce HBV RNA in hepatocytes. MCPIP1 expression level was higher in the liver tissue of HBV-infected patients and mice. Overexpression of MCPIP1 decreased HBV RNA, whereas ablating MCPIP1 in vitro enhanced HBV production. The domains responsible for RNase activity or oligomerization, were required for MCPIP1-mediated viral RNA reduction. The epsilon structure of HBV RNA was important for its antiviral activity and cleaved by MCPIP1 in the cell-free system. Lastly, knocking out MCPIP1 attenuated the anti-HBV effect of IL-1ß, suggesting that MCPIP1 is required for IL-1ß-mediated HBV RNA reduction. Overall, these results suggest that MCPIP1 may be involved in the antiviral effect downstream of IL-1ß.


Assuntos
Antivirais/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Hepatite B/tratamento farmacológico , Interações Hospedeiro-Patógeno , Interleucina-1beta/farmacologia , RNA Viral/química , Replicação Viral , Animais , Células Hep G2 , Hepatite B/metabolismo , Hepatite B/virologia , Humanos , Camundongos , RNA Viral/efeitos dos fármacos , RNA Viral/metabolismo , Ribonucleases/genética , Fatores de Transcrição/genética
14.
J Virol ; 94(23)2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32938759

RESUMO

Some plus-stranded RNA viruses generate double-membrane vesicles (DMVs), one type of the membrane replication factories, as replication sites. Little is known about the lipid components involved in the biogenesis of these vesicles. Sphingomyelin (SM) is required for hepatitis C virus (HCV) replication, but the mechanism of SM involvement remains poorly understood. SM biosynthesis starts in the endoplasmic reticulum (ER) and gives rise to ceramide, which is transported from the ER to the Golgi by the action of ceramide transfer protein (CERT), where it can be converted to SM. In this study, inhibition of SM biosynthesis, either by using small-molecule inhibitors or by knockout (KO) of CERT, suppressed HCV replication in a genotype-independent manner. This reduction in HCV replication was rescued by exogenous SM or ectopic expression of the CERT protein, but not by ectopic expression of nonfunctional CERT mutants. Observing low numbers of DMVs in stable replicon cells treated with a SM biosynthesis inhibitor or in CERT-KO cells transfected with either HCV replicon or with constructs that drive HCV protein production in a replication-independent system indicated the significant importance of SM to DMVs. The degradation of SM of the in vitro-isolated DMVs affected their morphology and increased the vulnerability of HCV RNA and proteins to RNase and protease treatment, respectively. Poliovirus, known to induce DMVs, showed decreased replication in CERT-KO cells, while dengue virus, known to induce invaginated vesicles, did not. In conclusion, these findings indicated that SM is an essential constituent of DMVs generated by some plus-stranded RNA viruses.IMPORTANCE Previous reports assumed that sphingomyelin (SM) is essential for HCV replication, but the mechanism was unclear. In this study, we showed for the first time that SM and ceramide transfer protein (CERT), which is in the SM biosynthesis pathway, are essential for the biosynthesis of double-membrane vesicles (DMVs), the sites of viral replication. Low numbers of DMVs were observed in CERT-KO cells transfected with replicon RNA or with constructs that drive HCV protein production in a replication-independent system. HCV replication was rescued by ectopic expression of the CERT protein, but not by CERT mutants, that abolishes the binding of CERT to vesicle-associated membrane protein-associated protein (VAP) or phosphatidylinositol 4-phosphate (PI4P), indicating new roles for VAP and PI4P in HCV replication. The biosynthesis of DMVs has great importance to replication by a variety of plus-stranded RNA viruses. Understanding of this process is expected to facilitate the development of diagnosis and antivirus.


Assuntos
Proteínas de Transporte/metabolismo , Hepacivirus/metabolismo , Esfingomielinas/metabolismo , Replicação Viral/fisiologia , Transporte Biológico , Proteínas de Transporte/genética , Linhagem Celular , Ceramidas , Retículo Endoplasmático/metabolismo , Técnicas de Inativação de Genes , Complexo de Golgi/metabolismo , Células HEK293 , Hepatite C/virologia , Humanos , Fosfatos de Fosfatidilinositol , RNA Viral/genética
15.
Cancer Med ; 9(20): 7663-7671, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32815637

RESUMO

An Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP1) is a principal oncogene that plays a pivotal role in EBV-associated malignant tumors including nasopharyngeal cancer (NPC). Recent genomic landscape studies revealed that NPC also contained many genomic mutations, suggesting the role of LMP1 as a driver gene for the induction of these genomic mutations. Nonetheless, its exact mechanism has not been investigated. In this study, we report that LMP1 alters the expression profile of APOBEC3s(A3s), host deaminases that introduce consecutive C-to-U mutations (hypermutation). In vitro, LMP1 induces APOBEC3B (A3B) and 3F(A3F), in a nasopharyngeal cell line, AdAH. Overexpression of LMP1, A3B, or A3F induces mtDNA hypermutation, which is also detectable from NPC specimens. Expression of LMP1 and A3B in NPC was correlated with neck metastasis. These results provide evidence as to which LMP1 induces A3s and mtDNA hypermutation, and how LMP1 facilitates metastasis is also discussed.


Assuntos
Desaminases APOBEC/genética , DNA Mitocondrial , Infecções por Vírus Epstein-Barr/complicações , Herpesvirus Humano 4 , Mutação , Neoplasias Nasofaríngeas/etiologia , Proteínas da Matriz Viral/metabolismo , Desaminases APOBEC/metabolismo , Linhagem Celular Tumoral , Transformação Celular Viral , Suscetibilidade a Doenças , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/fisiologia , Interações Hospedeiro-Patógeno/genética , Humanos , Imuno-Histoquímica , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , Estadiamento de Neoplasias
16.
Hum Cell ; 33(3): 590-598, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32474770

RESUMO

Cell lines are powerful tools for research into liver function at the molecular level. However, they are generally unsuitable for rigorously assessing the effects of amino acid composition, because many lines require serum-containing medium for their maintenance. Here, we aimed to investigate the effects of ornithine and arginine, which are included in the characteristic metabolic process in hepatocyte, on a human hepatoma-derived cell line (FLC-4) that can be cultured in serum-free medium. FLC-4 cells were cultured under the following three conditions: + ornithine/ - arginine, - ornithine/ - arginine, and -ornithine/ + arginine. Albumin expression evaluated by quantitative polymerase chain reaction and enzyme-linked immunosorbent assay and showed no obvious differences based on the presence of ornithine or arginine. However, the mRNA levels of two liver-enriched transcription factors (CEBPB and HNF1A), which are involved in regulating albumin expression, were significantly higher in cells grown in medium-containing arginine than that in cells grown in ornithine-containing medium. Western blotting showed that the levels both activating and inhibitory C/EBPß isoforms were significantly increased in cells grown in arginine medium. Furthermore, we have found that depletion of both ornithine and arginine, the polyamine sources, in the medium did not cause polyamine deficiency. When ornithine and arginine were depleted, albumin production was significantly reduced at the mRNA level, CEBPB mRNA levels were increased, and the level of activating form of C/EBPß was increased. The results of this study suggest that in hepatocyte, these two amino acids might have different functions, and because of which they elicit disparate cellular responses.


Assuntos
Aminoácidos/farmacologia , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Carcinoma Hepatocelular/genética , Expressão Gênica/efeitos dos fármacos , Neoplasias Hepáticas/genética , Albumina Sérica Humana/genética , Albumina Sérica Humana/metabolismo , Arginina/farmacologia , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Meios de Cultura , Hepatócitos/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Ornitina/farmacologia , RNA Mensageiro/metabolismo
17.
J Biol Chem ; 295(3): 800-807, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31836663

RESUMO

Sodium taurocholate cotransporting polypeptide (NTCP) is expressed at the surface of human hepatocytes and functions as an entry receptor of hepatitis B virus (HBV). Recently, we have reported that epidermal growth factor receptor (EGFR) is involved in NTCP-mediated viral internalization during the cell entry process. Here, we analyzed which function of EGFR is essential for mediating HBV internalization. In contrast to the reported crucial function of EGFR-downstream signaling for the entry of hepatitis C virus (HCV), blockade of EGFR-downstream signaling proteins, including mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K), and signal transducer and activator of transcription (STAT), had no or only minor effects on HBV infection. Instead, deficiency of EGFR endocytosis resulting from either a deleterious mutation in EGFR or genetic knockdown of endocytosis adaptor molecules abrogated internalization of HBV via NTCP and prevented viral infection. EGFR activation triggered a time-dependent relocalization of HBV preS1 to the early and late endosomes and to lysosomes in concert with EGFR transport. Suppression of EGFR ubiquitination by site-directed mutagenesis or by knocking down two EGFR-sorting molecules, signal-transducing adaptor molecule (STAM) and lysosomal protein transmembrane 4ß (LAPTM4B), suggested that EGFR transport to the late endosome is critical for efficient HBV infection. Cumulatively, these results support the idea that the EGFR endocytosis/sorting machinery drives the translocation of NTCP-bound HBV from the cell surface to the endosomal network, which eventually enables productive viral infection.


Assuntos
Endocitose/genética , Endossomos/genética , Receptores ErbB/genética , Hepatite B/genética , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/química , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Endossomos/química , Receptores ErbB/química , Células Hep G2 , Hepacivirus/química , Hepacivirus/genética , Hepacivirus/patogenicidade , Hepatite B/metabolismo , Hepatite B/virologia , Vírus da Hepatite B/química , Vírus da Hepatite B/genética , Vírus da Hepatite B/patogenicidade , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , MAP Quinase Quinase 1/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas Oncogênicas/química , Proteínas Oncogênicas/genética , Transportadores de Ânions Orgânicos Dependentes de Sódio , Fosfatidilinositol 3-Quinases/genética , Fosfoproteínas/química , Fosfoproteínas/genética , Fatores de Transcrição STAT/genética , Simportadores , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Internalização do Vírus
18.
J Gastroenterol ; 55(4): 441-452, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31768802

RESUMO

BACKGROUND: Hepatitis B virus (HBV) polymerase is the only virus-encoded enzyme essential for producing the HBV genome and is regarded as an attractive drug target. However, the difficulty of synthesizing and purifying recombinant HBV polymerase protein has hampered the development of new drugs targeting this enzyme, especially compounds unrelated to the nucleoside structure. We recently have developed a technique for the synthesis and purification of recombinant HBV polymerase containing the reverse transcriptase (RT) domain that carried DNA elongation activity in vitro. METHODS: We used the overproduced protein to establish an in vitro high-throughput screening system to identify compounds that inhibit the elongation activity of HBV polymerase. RESULTS: We screened 1120 compounds and identified a stilbene derivative, piceatannol, as a potential anti-HBV agent. Derivative analysis identified another stilbene derivative, PDM2, that was able to inhibit HBV replication with an IC50 of 14.4 ± 7.7 µM. An infection experiment suggested that the compounds inhibit the replication of HBV rather than the entry process, as expected. Surface plasmon resonance analysis demonstrated a specific interaction between PDM2 and the RT domain. Importantly, PDM2 showed similar inhibitory activity against the replication of both wild-type HBV and a lamivudine/entecavir-resistant HBV variant. Furthermore, PDM2 showed an additive effect in combination with clinically used nucleos(t)ide analogs. CONCLUSIONS: We report the development of a screening system that is useful for identifying non-nucleos(t)ide RT inhibitors.


Assuntos
DNA Viral/biossíntese , Vírus da Hepatite B/enzimologia , DNA Polimerase Dirigida por RNA/biossíntese , Inibidores da Transcriptase Reversa/farmacologia , Replicação Viral/efeitos dos fármacos , Antivirais , Avaliação Pré-Clínica de Medicamentos/métodos , Farmacorresistência Viral , Guanina/análogos & derivados , Células Hep G2 , Humanos , Técnicas In Vitro , Concentração Inibidora 50 , Lamivudina , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas Recombinantes , Estilbenos/farmacologia
19.
J Virol ; 94(2)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31645450

RESUMO

A number of positive-strand RNA viruses, such as hepatitis C virus (HCV) and poliovirus, use double-membrane vesicles (DMVs) as replication sites. However, the role of cellular proteins in DMV formation during virus replication is poorly understood. HCV NS4B protein induces the formation of a "membranous web" structure that provides a platform for the assembly of viral replication complexes. Our previous screen of NS4B-associated host membrane proteins by dual-affinity purification, liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), and small interfering RNA (siRNA) methods revealed that the Surfeit 4 (Surf4) gene, which encodes an integral membrane protein, is involved in the replication of the JFH1 subgenomic replicon. Here, we investigated in detail the effect of Surf4 on HCV replication. Surf4 affects HCV replication in a genotype-independent manner, whereas HCV replication does not alter Surf4 expression. The influence of Surf4 on HCV replication indicates that while Surf4 regulates replication, it has no effect on entry, translation, assembly, or release. Analysis of the underlying mechanism showed that Surf4 is recruited into HCV RNA replication complexes by NS4B and is involved in the formation of DMVs and the structural integrity of RNA replication complexes. Surf4 also participates in the replication of poliovirus, which uses DMVs as replication sites, but it has no effect on the replication of dengue virus, which uses invaginated/sphere-type vesicles as replication sites. These findings clearly show that Surf4 is a novel cofactor that is involved in the replication of positive-strand RNA viruses using DMVs as RNA replication sites, which provides valuable clues for DMV formation during positive-strand RNA virus replication.IMPORTANCE Hepatitis C virus (HCV) NS4B protein induces the formation of a membranous web (MW) structure that provides a platform for the assembly of viral replication complexes. The main constituents of the MW are double-membrane vesicles (DMVs). Here, we found that the cellular protein Surf4, which maintains endoplasmic reticulum (ER)-Golgi intermediate compartments and the Golgi compartment, is recruited into HCV RNA replication complexes by NS4B and is involved in the formation of DMVs. Moreover, Surf4 participates in the replication of poliovirus, which uses DMVs as replication sites, but has no effect on the replication of dengue virus, which uses invaginated vesicles as replication sites. These results indicate that the cellular protein Surf4 is involved in the replication of positive-strand RNA viruses that use DMVs as RNA replication sites, providing new insights into DMV formation during virus replication and potential targets for the diagnosis and treatment of positive-strand RNA viruses.


Assuntos
Estruturas da Membrana Celular/metabolismo , Hepacivirus/fisiologia , Proteínas de Membrana/metabolismo , RNA Viral/biossíntese , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/fisiologia , Linhagem Celular Tumoral , Estruturas da Membrana Celular/genética , Estruturas da Membrana Celular/virologia , Genótipo , Humanos , Proteínas de Membrana/genética , RNA Viral/genética , Proteínas não Estruturais Virais/genética
20.
Intern Med ; 58(20): 2969-2975, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31243225

RESUMO

A 72-year-old Japanese man was referred to our hospital with yellow discoloration of the sclera and liver dysfunction. He was diagnosed with acute hepatitis C virus (HCV) infection on the basis of HCV-RNA positivity and anti-HCV seroconversion. A transjugular liver biopsy confirmed submassive hepatic necrosis. Five days after admission, no flapping tremor was observed, and the prothrombin time-international normalized ratio (PT-INR) and total bilirubin level showed increases of 1.70 and 17.8 mg/dL, respectively. The Model for End-Stage Liver Disease score was determined to be 25, and the risk of acute liver failure (ALF) was estimated to be 48% according to the Japan Hepatic Encephalopathy Prediction Model. Considering that rapid HCV clearance and temporary suppression of the immune response would prevent ALF, we prescribed oral ledipasvir (LDV) 90 mg and sofosbuvir (SOF) 400 mg for 12 weeks and intravenously injected methylprednisolone 1 g for 3 days. His PT-INR promptly improved, although the total bilirubin level increased to 30.3 mg/dL. Plasma bilirubin absorption was performed three times, and the total bilirubin level gradually decreased. HCV-RNA was still detectable at six weeks after the start of LDV/SOF therapy and finally undetectable at eight weeks. There were no adverse events associated with LDV/SOF. The patient was discharged 73 days after admission. A sustained virological response was achieved at 12 and 24 weeks after treatment. The findings from this case suggest that LDV/SOF therapy can be a promising option for acute HCV monoinfection associated with a high risk of ALF.


Assuntos
Antivirais/uso terapêutico , Benzimidazóis/uso terapêutico , Fluorenos/uso terapêutico , Hepatite C/tratamento farmacológico , Falência Hepática Aguda/virologia , Uridina Monofosfato/análogos & derivados , Doença Aguda , Idoso , Quimioterapia Combinada , Hepacivirus/isolamento & purificação , Hepatite C/complicações , Hepatite C/virologia , Humanos , Falência Hepática Aguda/prevenção & controle , Masculino , Sofosbuvir , Resposta Viral Sustentada , Uridina Monofosfato/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA