Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 23(2): 100713, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184013

RESUMO

Optimizing data-independent acquisition methods for proteomics applications often requires balancing spectral resolution and acquisition speed. Here, we describe a real-time full mass range implementation of the phase-constrained spectrum deconvolution method (ΦSDM) for Orbitrap mass spectrometry that increases mass resolving power without increasing scan time. Comparing its performance to the standard enhanced Fourier transformation signal processing revealed that the increased resolving power of ΦSDM is beneficial in areas of high peptide density and comes with a greater ability to resolve low-abundance signals. In a standard 2 h analysis of a 200 ng HeLa digest, this resulted in an increase of 16% in the number of quantified peptides. As the acquisition speed becomes even more important when using fast chromatographic gradients, we further applied ΦSDM methods to a range of shorter gradient lengths (21, 12, and 5 min). While ΦSDM improved identification rates and spectral quality in all tested gradients, it proved particularly advantageous for the 5 min gradient. Here, the number of identified protein groups and peptides increased by >15% in comparison to enhanced Fourier transformation processing. In conclusion, ΦSDM is an alternative signal processing algorithm for processing Orbitrap data that can improve spectral quality and benefit quantitative accuracy in typical proteomics experiments, especially when using short gradients.


Assuntos
Proteoma , Espectrometria de Massas em Tandem , Humanos , Proteoma/metabolismo , Espectrometria de Massas em Tandem/métodos , Peptídeos/análise , Células HeLa , Proteômica/métodos
2.
J Proteome Res ; 17(11): 4008-4016, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30220210

RESUMO

A popular method for peptide quantification relies on isobaric labeling such as tandem mass tags (TMT), which enables multiplexed proteome analyses. Quantification is achieved by reporter ions generated by fragmentation in a tandem mass spectrometer. However, with higher degrees of multiplexing, the smaller mass differences between the reporter ions increase the mass resolving power requirements. This contrasts with faster peptide sequencing capabilities enabled by lowered mass resolution on Orbitrap instruments. It is therefore important to determine the mass resolution limits for highly multiplexed quantification when maximizing proteome depth. Here, we defined the lower boundaries for resolving TMT reporter ions with 0.0063 Da mass differences using an ultra-high-field Orbitrap mass spectrometer. We found the optimal method depends on the relative ratio between closely spaced reporter ions and that 64 ms transient acquisition time provided sufficient resolving power for separating TMT reporter ions with absolute ratio changes up to 16-fold. Furthermore, a 32 ms transient processed with phase-constrained spectrum deconvolution provides >50% more identifications with >99% quantified but with a slight loss in quantification precision and accuracy. These findings should guide decisions on what Orbitrap resolution settings to use in future proteomics experiments, relying on isobaric TMT reporter ion quantification.


Assuntos
Peptídeos/análise , Proteoma/isolamento & purificação , Proteômica/métodos , Coloração e Rotulagem/métodos , Espectrometria de Massas em Tandem/métodos , Linhagem Celular , Linhagem Celular Tumoral , Células Epiteliais/química , Células Epiteliais/citologia , Células HeLa , Humanos , Íons , Células Jurkat , Neurônios/química , Neurônios/patologia , Osteoblastos/química , Osteoblastos/patologia , Proteólise , Proteoma/genética , Proteoma/metabolismo , Epitélio Pigmentado da Retina/química , Epitélio Pigmentado da Retina/citologia
3.
J Proteomics ; 159: 67-76, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28242452

RESUMO

The increasing importance of immunoglobulins G (IgGs) as biotherapeutics calls for improved structural characterization methods designed for these large (~150kDa) macromolecules. Analysis workflows have to be rapid, robust, and require minimal sample preparation. In a previous work we showed the potential of Orbitrap Fourier transform mass spectrometry (FTMS) combined with electron transfer dissociation (ETD) for the top-down investigation of an intact IgG1, resulting in ~30% sequence coverage. Here, we describe a top-down analysis of two IgGs1 (adalimumab and trastuzumab) and one IgG2 (panitumumab) performed with ETD on a mass spectrometer equipped with a high-field Orbitrap mass analyzer. For the IgGs1, sequence coverage comparable to the previous results was achieved in a two-fold reduced number of summed transients, which corresponds, taken together with the significantly increased spectra acquisition rate, to ~six-fold improvement in analysis time. Furthermore, we studied the influence of ion-ion interaction times on ETD product ions for IgGs1, and the differences in fragmentation behavior between IgGs1 and IgG2, which present structural differences. Overall, these results reinforce the hypothesis that gas phase dissociation using both energy threshold-based and radical-driven ion activations is directed to specific regions of the polypeptide chains mostly by the location of disulfide bonds. SIGNIFICANCE OF THE STUDY: Compared with our previous report, the results presented herein demonstrate the power of technological advances of the next generation Orbitrap™ platform, including the use of a high-field compact (i.e., D20) Orbitrap mass analyzer, and a dedicated manipulation strategy for large protein ions (via their trapping in the HCD collision cell along with reduction of the pressure in the cell). Notably, these important developments became recently commercially available in the top-end Orbitrap platforms under the name of "Protein Mode". Furthermore, we continued exploring the advantages offered by the summation (averaging) of transients (time-domain data) for improving the signal-to-noise ratio of top-down mass spectra. Finally, for the first time we report the application of the hybrid ion activation technique that combines electron transfer dissociation and higher energy collisional dissociation, known as EThcD, on intact monoclonal antibodies. Under these specific instrumental parameters, EThcD produces a partially complementary fragmentation pattern compared to ETD, increasing the overall sequence coverage especially at the protein termini.


Assuntos
Adalimumab/química , Anticorpos Monoclonais/química , Elétrons , Espectrometria de Massas , Trastuzumab/química , Humanos , Panitumumabe
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA