Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Phys Lipids ; 260: 105377, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38325712

RESUMO

Atorvastatin calcium (ATV) and proanthocyanidins (PAC) have a strong antioxidant activity, that can benefit to reduce the atherosclerotic plaque progression. Unfortunately, the bioavailability of ATV is greatly reduced due to its limited drug solubility while the PAC drug is unstable upon exposure to the atmospheric oxygen. Herein, the lyotropic liquid crystalline nanoparticles (LLCNPs) constructed by a binary mixture of soy phosphatidylcholine (SPC) and citric acid ester of monoglyceride (citrem) at different weight ratios were used to encapsulate the hydrophobic ATV and hydrophilic PAC. The LLCNPs were further characterized by small-angle X-ray scattering and dynamic light scattering. Depending on the lipid composition, the systems have a size range of 140-190 nm and were able to encapsulate both drugs in the range of 90-100%. Upon increasing the citrem content of drug-loaded LLCNPs, the hexosomes (H2) was completely transformed to an emulsified inverse micellar (L2). The optimum encapsulation efficiency (EE) of ATV and PAC were obtained in citrem/SPC weight ratio 4:1 (L2) and 1:1 (H2), respectively. There was a substantial change in the mean size and PDI of the nanoparticles upon 30 days of storage with the ATV-loaded LLCNPs exhibiting greater colloidal instability than PAC-loaded LLCNPs. The biphasic released pattern (burst released at the initial stage followed by the sustained released at the later stage) was perceived in ATV formulation, while the burst drug released pattern was observed in PAC formulations that could be attributed by its internal H2 structure. Interestingly, the cytokine studies showed that the PAC-LLCNPs promisingly up regulate the expressions of tumor necrosis factor-alpha (TNF-α) better than the drug-free and ATV-loaded LLCNPs samples. The structural tunability of citrem/SPC nanoparticles and their effect on physicochemical characteristic, biological activities and potential as an alternative drug delivery platform in the treatment of atherosclerosis are discussed.


Assuntos
Cristais Líquidos , Nanopartículas , Proantocianidinas , Atorvastatina/química , Preparações Farmacêuticas , Nanopartículas/química , Cristais Líquidos/química
2.
Adv Pharmacol Pharm Sci ; 2023: 8127695, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38090376

RESUMO

Breast cancer is the most common cancer diagnosed in women, and in 2020, there were 684, 996 deaths due to this disease. Epidermal growth factor receptors (EGFRs) and their respective ligands have been blamed for the pathogenesis and resistance to treatment in specific breast cancer cases. With EGFR having four homologues: EGFR1, EGFR2, EGFR3, and EGFR4, in-depth understanding of EGFR biology led to the discovery of small-molecule inhibitors and antibodies against this receptor. Gefitinib (GEF), a tyrosine kinase inhibitor of EGFR1, possesses a vast potential for treatment against breast cancer and is supported by a multiplicity of experiments. Unfortunately, in clinical trials, GEF did not show the outcomes expected with complete response and disease progress. This is due to incomplete understanding of the molecular mechanisms involved in EGFR signaling and endocrine sensitivity. Hence, additional in-depth experiments are needed regarding various molecular pathways and crosstalk pathways to comprehend GEF's action mechanism thoroughly in breast cancer patients. In this review, the role of EGFR in the development and pathogenesis of breast cancer and the pharmacokinetics and pharmacotherapy of GEF for the treatment of breast cancer have been elaborated. Nanomedicines synthesized with GEF have shown positive experimental response, paving a promising path for GEF against breast cancer.

3.
J Orthop Surg Res ; 16(1): 663, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34749769

RESUMO

BACKGROUND: Osteoarthritis (OA) is a multifaceted condition that affects both the subchondral bones and the articular cartilage. Animal models are widely used as an effective supplement and simulation for human OA studies in investigating disease mechanisms and pathophysiology. This study is aimed to evaluate the temporal changes of bone and cartilage in surgically and chemically induced osteoarthritis using micro-computed tomography and histology. METHODS: Thirty rabbits underwent either anterior cruciate ligament transection (ACLT) procedure or injected intraarticularly with monosodium iodoacetate (MIA, 8 mg) at the right knee joint. The subchondral bones were scanned via micro-CT, and articular cartilage was assessed histologically at 4-, 8- and 12-week post-induction. RESULTS: Based on bone micro-architecture parameters, the surgically induced group revealed bone remodelling processes, indicated by increase bone volume, thickening of trabeculae, reduced trabecular separation and reduced porosity. On the other hand, the chemically induced group showed active bone resorption processes depicted by decrease bone volume, thinning of trabeculae, increased separation of trabecular and increased porosity consistently until week 12. Histologically, the chemically induced group showed more severe articular cartilage damage compared to the surgically induced group. CONCLUSIONS: It can be concluded that in the ACLT group, subchondral bone remodelling precedes articular cartilage damage and vice versa in the MIA group. The findings revealed distinct pathogenic pathways for both induction methods, providing insight into tailored therapeutic strategies, as well as disease progression and treatment outcomes monitoring.


Assuntos
Cartilagem Articular , Osteoartrite , Animais , Ligamento Cruzado Anterior , Osso e Ossos , Cartilagem Articular/diagnóstico por imagem , Modelos Animais de Doenças , Osteoartrite/induzido quimicamente , Osteoartrite/diagnóstico por imagem , Coelhos , Microtomografia por Raio-X
4.
Biology (Basel) ; 10(9)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34571787

RESUMO

One of the most prevalent death causes among women worldwide is breast cancer. This study aimed to characterise and differentiate the proteomics profiles of breast cancer cell lines treated with Doxorubicin (DOX) and Doxorubicin-CaCO3-nanoparticles (DOX-Ar-CC-NPs). This study determines the therapeutic potential of doxorubicin-loaded aragonite CaCO3 nanoparticles using a Liquid Chromatography/Mass Spectrometry analysis. In total, 334 proteins were expressed in DOX-Ar-CC-NPs treated cells, while DOX treatment expressed only 54 proteins. Out of the 334 proteins expressed in DOX-CC-NPs treated cells, only 36 proteins showed changes in abundance, while in DOX treated cells, only 7 out of 54 proteins were differentially expressed. Most of the 30 identified proteins that are differentially expressed in DOX-CC-NPs treated cells are key enzymes that have an important role in the metabolism of carbohydrates as well as energy, including: pyruvate kinase, ATP synthase, enolase, glyceraldehyde-3-phosphate dehydrogenase, mitochondrial ADP/ATP carrier, and trypsin. Other identified proteins are structural proteins which included; Keratin, α- and ß-tubulin, actin, and actinin. Additionally, one of the heat shock proteins was identified, which is Hsp90; other proteins include Annexins and Human epididymis protein 4. While the proteins identified in DOX-treated cells were tubulin alpha-1B chain and a beta chain, actin cytoplasmic 1, annexin A2, IF rod domain-containing protein, and 78 kDa glucose-regulated protein. Bioinformatics analysis revealed the predicted canonical pathways linking the signalling of the actin cytoskeleton, ILK, VEGF, BAG2, integrin and paxillin, as well as glycolysis. This research indicates that proteomic analysis is an effective technique for proteins expression associated with chemotherapy drugs on cancer tumours; this method provides the opportunity to identify treatment targets for MCF-7 cancer cells, and a liquid chromatography-mass spectrometry (LC-MS/MS) system allowed the detection of a larger number of proteins than 2-DE gel analysis, as well as proteins with maximum pIs and high molecular weight.

5.
Biomed Pharmacother ; 143: 112207, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34563950

RESUMO

Stevia rebaudiana Bertoni is a native plant to Paraguay. The extracts have been used as a famous sweetening agent, and the bioactive components derived from stevia possess a broad spectrum of therapeutical potential for various illnesses. Among its medicinal benefits are anti-hypertensive, anti-tumorigenic, anti-diabetic, and anti-hyperlipidemia. Statins (3-hydro-3-methylglutaryl-coenzyme A reductase inhibitor) are a class of drugs used to treat atherosclerosis. Statins are explicitly targeting the HMG-CoA reductase, an enzyme in the rate-limiting step of cholesterol biosynthesis. Despite being widely used in regulating plasma cholesterol levels, the adverse effects of the drug are a significant concern among clinicians and patients. Hence, steviol glycosides derived from stevia have been proposed as an alternative in replacing statins. Diterpene glycosides from stevia, such as stevioside and rebaudioside A have been evaluated for their efficacy in alleviating cholesterol levels. These glycosides are a potential candidate in treating and preventing atherosclerosis provoked by circulating lipid retention in the sub-endothelial lining of the artery. The present review is an effort to integrate the pathogenesis of atherosclerosis, involvement of lipid droplets biogenesis and its associated proteins in atherogenesis, current approaches to treat atherosclerosis, and pharmacological potential of stevia in treating the disease.


Assuntos
Aterosclerose/prevenção & controle , Fármacos Cardiovasculares/uso terapêutico , Doenças Cardiovasculares/prevenção & controle , Dislipidemias/tratamento farmacológico , Hipolipemiantes/uso terapêutico , Extratos Vegetais/uso terapêutico , Stevia , Animais , Aterosclerose/diagnóstico , Aterosclerose/epidemiologia , Biomarcadores/sangue , Fármacos Cardiovasculares/efeitos adversos , Fármacos Cardiovasculares/isolamento & purificação , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Dislipidemias/diagnóstico , Dislipidemias/epidemiologia , Fatores de Risco de Doenças Cardíacas , Humanos , Hipolipemiantes/efeitos adversos , Hipolipemiantes/isolamento & purificação , Gotículas Lipídicas/efeitos dos fármacos , Gotículas Lipídicas/metabolismo , Lipídeos/sangue , Extratos Vegetais/efeitos adversos , Extratos Vegetais/isolamento & purificação , Medição de Risco , Stevia/química , Resultado do Tratamento
6.
Nanomaterials (Basel) ; 11(8)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34443820

RESUMO

Calcium carbonate has slowly paved its way into the field of nanomaterial research due to its inherent properties: biocompatibility, pH-sensitivity, and slow biodegradability. In our efforts to synthesize calcium carbonate nanoparticles (CSCaCO3NP) from blood cockle shells (Anadara granosa), we developed a simple method to synthesize CSCaCO3NP, and loaded them with gefitinib (GEF) and paclitaxel (PTXL) to produce mono drug-loaded GEF-CSCaCO3NP, PTXL-CSCaCO3NP, and dual drug-loaded GEF-PTXL-CSCaCO3NP without usage of toxic chemicals. Fourier-transform infrared spectroscopy (FTIR) results reveal that the drugs are bound to CSCaCO3NP. Scanning electron microscopy studies reveal that the CSCaCO3NP, GEF-CSCaCO3NP, PTXL-CSCaCO3NP, and GEF-PTXL-CSCaCO3NP are almost spherical nanoparticles, with a diameter of 63.9 ± 22.3, 83.9 ± 28.2, 78.2 ± 26.4, and 87.2 ± 26.7 (nm), respectively. Dynamic light scattering (DLS) and N2 adsorption-desorption experiments revealed that the synthesized nanoparticles are negatively charged and mesoporous, with surface areas ranging from ~8 to 10 (m2/g). Powder X-ray diffraction (PXRD) confirms that the synthesized nanoparticles are aragonite. The CSCaCO3NP show excellent alkalinization property in plasma simulating conditions and greater solubility in a moderately acidic pH medium. The release of drugs from the nanoparticles showed zero order kinetics with a slow and sustained release. Therefore, the physico-chemical characteristics and in vitro findings suggest that the drug loaded CSCaCO3NP represent a promising drug delivery system to deliver GEF and PTXL against breast cancer.

7.
Rep Biochem Mol Biol ; 10(3): 477-487, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34981026

RESUMO

BACKGROUND: Rebaudioside A is one of the major diterpene glycosides found in Stevia had been reported to possess anti-hyperlipidemic effects. In this study, we explore the potential cholesterol-regulating mechanisms of Rebaudioside A in the human hepatoma (HepG2) cell line in comparison with simvastatin. METHODS: Cells were incubated with Rebaudioside A at several concentrations (0-10 µM) to determine the cytotoxicity by the MTT assay. Cells were treated with selected dosage (1 and 5 µM) in further experiments. Total cellular lipid was extracted by Bligh and Dyer method and subjected to quantitative colorimetric assay. To illustrate the effect of Rebaudioside A on cellular lipid droplets and low-density lipoprotein receptors, treated cells were subjected to immunofluorescence microscopy. Finally, we investigated the expression of experimental gene patterns of cells in response to treatment. RESULTS: In this study, cytotoxicity of Rebaudioside A was determined at 27.72 µM. Treatment of cells with a higher concentration of Rebaudioside A promotes better hepatocellular cholesterol internalization and ameliorates cholesterol-regulating genes such as HMGCR, LDLR, and ACAT2. CONCLUSION: In conclusion, our data demonstrated that Rebaudioside A is capable to regulate cholesterol levels in HepG2 cells. Hence, we proposed that Rebaudioside A offers a potential alternative to statins for atherosclerosis therapy.

8.
J Ethnopharmacol ; 268: 113647, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33271242

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Scurrula ferruginea (Jack) Danser (locally known as 'Dedalu' or 'dian nan ji sheng' in Malaysia and China) is a hemi-parasitic shrub that is widely used as herbal medicine to treat inflammation, rheumatism, and stroke. However, the scientific basis of its anti-inflammatory function and mechanism remain to be proven. AIM OF THE STUDY: To evaluate the anti-inflammatory activity as well as the preliminary mechanism of S. ferruginea parasitizing on Tecoma stans. MATERIALS AND METHODS: The anti-inflammatory capability of freeze-dried stem aqueous extract was assessed via inhibition of inflammatory cytokines interleukin- (IL-) 1ß, IL-6, IL-10, and tumor necrosis factor-alpha (TNF-α) production in lipopolysaccharide (LPS) and interferon-γ (IFN-γ) stimulated RAW 264.7 macrophages. The underlying anti-inflammatory mechanism was deciphered through reverse transcriptase and real time quantitative polymerase chain reactions (RT-PCR and qPCR) for inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), IL-1ß, and TNF-α mRNA expression. RESULTS: The results exhibited that aqueous extract of freeze-dried S. ferruginea stem sample concentration-dependently inhibited IL-1ß protein production along with the down regulation of iNOS and IL-1ß mRNA expression. Moreover, it significantly suppressed the protein release of IL-6 and IL-10 in a concentration-dependent manner. However, it slightly reduced TNF-α at higher sample concentration (250 µg/mL) without affecting the mRNA expression levels of COX-2 and TNF-α. CONCLUSIONS: This study suggests that S. ferruginea parasitizing on Tecoma stans exerted anti-inflammatory capability attributed to inhibition of iNOS and IL-1ß mRNA expression, NO creation, IL-1ß, IL-6, IL-10, and TNF-α protein production, indicating this plant might be a useful plant-derived candidate against inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Bignoniaceae , Interferon gama/toxicidade , Lipopolissacarídeos/toxicidade , Loranthaceae , Extratos Vegetais/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Relação Dose-Resposta a Droga , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Extratos Vegetais/isolamento & purificação , Células RAW 264.7
9.
Pathogens ; 9(9)2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854179

RESUMO

Theileriosis is a blood piroplasmic disease that adversely affects the livestock industry, especially in tropical and sub-tropical countries. It is caused by haemoprotozoan of the Theileria genus, transmitted by hard ticks and which possesses a complex life cycle. The clinical course of the disease ranges from benign to lethal, but subclinical infections can occur depending on the infecting Theileria species. The main clinical and clinicopathological manifestations of acute disease include fever, lymphadenopathy, anorexia and severe loss of condition, conjunctivitis, and pale mucous membranes that are associated with Theileria-induced immune-mediated haemolytic anaemia and/or non-regenerative anaemia. Additionally, jaundice, increases in hepatic enzymes, and variable leukocyte count changes are seen. Theileria annulata and Theileria parva induce an incomplete transformation of lymphoid and myeloid cell lineages, and these cells possess certain phenotypes of cancer cells. Pathogenic genotypes of Theileria orientalis have been recently associated with severe production losses in Southeast Asia and some parts of Europe. The infection and treatment method (ITM) is currently used in the control and prevention of T. parva infection, and recombinant vaccines are still under evaluation. The use of gene gun immunization against T. parva infection has been recently evaluated. This review, therefore, provides an overview of the clinicopathological and immunopathological profiles of Theileria-infected cattle and focus on DNA vaccines consisting of plasmid DNA with genes of interest, molecular adjuvants, and chitosan as the most promising next-generation vaccine against bovine theileriosis.

10.
Front Oncol ; 9: 599, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31334120

RESUMO

Background: Combination chemotherapy of anticancer drugs is extensively being researched since it could reduce multidrug resistance and side effects as a result of lower dosage of each drug. In this study, we evaluated the effects of doxorubicin-loaded (Dox-ACNP), thymoquinone-loaded (TQ-ACNP) and a combined doxorubicin/thymoquinone-loaded cockle shell-derived aragonite calcium carbonate nanoparticles (Dox/TQ-ACNP) on breast cancer cell line and compared with their free drugs counterpart. Methods: Cell viability using MTT assay, apoptosis with Annexin V-PI kit, morphological changes using contrast light microscope, scanning electron microscope and transmission electron microscope, cell cycle analysis, invasion assay, and scratch assay were carried out. The cell viability was evaluated in breast cancer cell line (MDA MB231), normal breast cells (MDF10A) and normal fibroblast (3T3). Results: MDA MB231 IC50 dosages of drug-loaded nanoparticle were not toxic to the normal cells. The combination therapy showed enhanced apoptosis, reduction in cellular migration and invasion when compared to the single drug-loaded nanoparticle and the free drugs. Scanning electron microscope showed presence of cell shrinkage, cell membrane blebbing, while transmission electron microscope showed nuclear fragmentation, disruption of cell membrane, apoptotic bodies, and disruption of mitochondrial cistern. Conclusion: The results from this study showed that the combined drug-loaded cockle shell-derived aragonite calcium carbonate nanoparticles (Dox/TQ-ACNP) showed higher efficacy in breast cancer cells at lower dose of doxorubicin and thymoquinone.

11.
PLoS One ; 14(4): e0214326, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30939149

RESUMO

Klebsiella pneumoniae (KP) remains the most prevalent nosocomial pathogen and carries the carbapenemase (KPC) gene which confers resistance towards carbapenem. Thus, it is necessary to discover novel antimicrobials to address the issue of antimicrobial resistance in such pathogens. Natural products such as essential oils are a promising source due to their complex composition. Essential oils have been shown to be effective against pathogens, but the overall mechanisms have yet to be fully explained. Understanding the molecular mechanisms of essential oil towards KPC-KP cells would provide a deeper understanding of their potential use in clinical settings. Therefore, we aimed to investigate the mode of action of essential oil against KPC-KP cells from a proteomic perspective by comparing the overall proteome profile of KPC-KP cells treated with cinnamon bark (Cinnamomum verum J. Presl) essential oil (CBO) at their sub-inhibitory concentration of 0.08% (v/v). A total of 384 proteins were successfully identified from the non-treated cells, whereas only 242 proteins were identified from the CBO-treated cells. Proteins were then categorized based on their biological processes, cellular components and molecular function prior to pathway analysis. Pathway analysis showed that CBO induced oxidative stress in the KPC-KP cells as indicated by the abundance of oxidative stress regulator proteins such as glycyl radical cofactor, catalase peroxidase and DNA mismatch repair protein. Oxidative stress is likely to oxidize and disrupt the bacterial membrane as shown by the loss of major membrane proteins. Several genes selected for qRT-PCR analysis validated the proteomic profile and were congruent with the proteomic abundance profiles. In conclusion, KPC-KP cells exposed to CBO undergo oxidative stress that eventually disrupts the bacterial membrane possibly via interaction with the phospholipid bilayer. Interestingly, several pathways involved in the bacterial membrane repair system were also affected by oxidative stress, contributing to the loss of cells viability.


Assuntos
Infecções por Klebsiella/tratamento farmacológico , Klebsiella pneumoniae/efeitos dos fármacos , Óleos Voláteis/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Bactérias/genética , Carbapenêmicos/efeitos adversos , Cinnamomum zeylanicum/química , Farmacorresistência Bacteriana/genética , Humanos , Infecções por Klebsiella/genética , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/patogenicidade , Óleos Voláteis/química , Casca de Planta/química , beta-Lactamases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA