Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 13: 1020576, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246869

RESUMO

Objectives: Glucocorticoids produced by the adrenal cortex are essential for the maintenance of metabolic homeostasis. Glucocorticoid activation is catalysed by 11ß-hydroxysteroid dehydrogenase 1 (11ß-HSD1). Excess glucocorticoids are associated with insulin resistance and hyperglycaemia. A small number of studies have demonstrated effects on glucocorticoid metabolism of bariatric surgery, a group of gastrointestinal procedures known to improve insulin sensitivity and secretion, which were assumed to result from weight loss. In this study, we hypothesize that a reduction in glucocorticoid action following bariatric surgery contributes to the widely observed euglycemic effects of the treatment. Methods: Glucose and insulin tolerance tests were performed at ten weeks post operatively and circulating corticosterone was measured. Liver and adipose tissues were harvested from fed mice and 11ß-HSD1 levels were measured by quantitative RT-PCR or Western (immuno-) blotting, respectively. 11ß-HSD1 null mice (Hsd11b1 -/-) were generated using CRISPR/Cas9 genome editing. Wild type and littermate Hsd11b1 -/- mice underwent Vertical Sleeve Gastrectomy (VSG) or sham surgery. Results: Under the conditions used, no differences in weight loss were observed between VSG treated and sham operated mice. However, both lean and obese WT VSG mice displayed significantly improved glucose clearance and insulin sensitivity. Remarkably, VSG restored physiological corticosterone production in HFD mice and reduced 11ß-HSD1 expression in liver and adipose tissue post-surgery. Elimination of the 11ß-HSD1/Hsd11b1 gene by CRISPR/Cas9 mimicked the effects of VSG on body weight and tolerance to 1g/kg glucose challenge. However, at higher glucose loads, the euglycemic effect of VSG was superior to Hsd11b1 elimination. Conclusions: Bariatric surgery improves insulin sensitivity and reduces glucocorticoid activation at the tissular level, under physiological and pathophysiological (obesity) conditions, irrespective of weight loss. These findings point towards a physiologically relevant gut-glucocorticoid axis, and suggest that lowered glucocorticoid exposure may represent an additional contribution to the health benefits of bariatric surgery.


Assuntos
Gastrectomia , Glucocorticoides , Resistência à Insulina , Insulinas , Animais , Camundongos , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Corticosterona , Glucocorticoides/sangue , Glucose , Camundongos Obesos , Redução de Peso
2.
Diabetes Obes Metab ; 24(11): 2090-2101, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35676825

RESUMO

AIMS: To describe the in vitro characteristics and antidiabetic in vivo efficacy of the novel glucagon-like peptide-1 receptor agonist (GLP-1RA) GL0034. MATERIALS AND METHODS: Glucagon-like peptide-1 receptor (GLP-1R) kinetic binding parameters, cyclic adenosine monophosphate (cAMP) signalling, endocytosis and recycling were measured using HEK293 and INS-1832/3 cells expressing human GLP-1R. Insulin secretion was measured in vitro using INS-1832/3 cells, mouse islets and human islets. Chronic administration studies to evaluate weight loss and glycaemic effects were performed in db/db and diet-induced obese mice. RESULTS: Compared to the leading GLP-1RA semaglutide, GL0034 showed increased binding affinity and potency-driven bias in favour of cAMP over GLP-1R endocytosis and ß-arrestin-2 recruitment. Insulin secretory responses were similar for both ligands. GL0034 (6 nmol/kg) led to at least as much weight loss and lowering of blood glucose as did semaglutide at a higher dose (14 nmol/kg). CONCLUSIONS: GL0034 is a G protein-biased agonist that shows powerful antidiabetic effects in mice, and may serve as a promising new GLP-1RA for obese patients with type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Insulinas , Monofosfato de Adenosina , Animais , Glicemia , AMP Cíclico/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Células HEK293 , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Ligantes , Camundongos , Redução de Peso , beta-Arrestinas/metabolismo
3.
Diabetes ; 71(8): 1623-1635, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35594379

RESUMO

Bariatric surgery improves glucose homeostasis, but the underlying mechanisms are not fully elucidated. Here, we show that the expression of sodium-glucose cotransporter 2 (SGLT2/Slc5a2) is reduced in the kidney of lean and obese mice following vertical sleeve gastrectomy (VSG). Indicating an important contribution of altered cotransporter expression to the impact of surgery, inactivation of the SGLT2/Slc5a2 gene by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 attenuated the effects of VSG, with glucose excursions following intraperitoneal injection lowered by ∼30% in wild-type mice but by ∼20% in SGLT2-null animals. The effects of the SGLT2 inhibitor dapaglifozin were similarly blunted by surgery. Unexpectedly, effects of dapaglifozin were still observed in SGLT2-null mice, consistent with the existence of metabolically beneficial off-target effects of SGLT2 inhibitors. Thus, we describe a new mechanism involved in mediating the glucose-lowering effects of bariatric surgery.


Assuntos
Glicemia , Células Secretoras de Insulina , Inibidores do Transportador 2 de Sódio-Glicose , Transportador 2 de Glucose-Sódio/metabolismo , Animais , Glicemia/metabolismo , Gastrectomia , Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Rim/metabolismo , Camundongos , Camundongos Knockout , Transportador 2 de Glucose-Sódio/genética , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia
4.
Endocr Rev ; 43(1): 19-34, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34363458

RESUMO

Obesity surgery remains the most effective treatment for obesity and its complications. Weight loss was initially attributed to decreased energy absorption from the gut but has since been linked to reduced appetitive behavior and potentially increased energy expenditure. Implicated mechanisms associating rearrangement of the gastrointestinal tract with these metabolic outcomes include central appetite control, release of gut peptides, change in microbiota, and bile acids. However, the exact combination and timing of signals remain largely unknown. In this review, we survey recent research investigating these mechanisms, and seek to provide insights on unanswered questions over how weight loss is achieved following bariatric surgery which may eventually lead to safer, nonsurgical weight-loss interventions or combinations of medications with surgery.


Assuntos
Cirurgia Bariátrica , Cirurgia Bariátrica/efeitos adversos , Metabolismo Energético , Humanos , Obesidade/metabolismo , Obesidade/cirurgia , Redução de Peso
6.
Nat Commun ; 12(1): 5165, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34453049

RESUMO

Bariatric surgery improves both insulin sensitivity and secretion and can induce diabetes remission. However, the mechanisms and time courses of these changes, particularly the impact on ß cell function, are difficult to monitor directly. In this study, we investigated the effect of Vertical Sleeve Gastrectomy (VSG) on ß cell function in vivo by imaging Ca2+ dynamics in islets engrafted into the anterior eye chamber. Mirroring its clinical utility, VSG in mice results in significantly improved glucose tolerance, and enhanced insulin secretion. We reveal that these benefits are underpinned by augmented ß cell function and coordinated activity across the islet. These effects involve changes in circulating GLP-1 levels which may act both directly and indirectly on the ß cell, in the latter case through changes in body weight. Thus, bariatric surgery leads to time-dependent increases in ß cell function and intra-islet connectivity which are likely to contribute to diabetes remission.


Assuntos
Cálcio/metabolismo , Diabetes Mellitus/metabolismo , Diabetes Mellitus/cirurgia , Células Secretoras de Insulina/metabolismo , Animais , Cirurgia Bariátrica , Glicemia/metabolismo , Diabetes Mellitus/diagnóstico por imagem , Feminino , Gastrectomia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Humanos , Insulina/metabolismo , Microscopia Intravital , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estômago/cirurgia
7.
Artigo em Inglês | MEDLINE | ID: mdl-32153504

RESUMO

Glucocorticoids are steroid hormones produced by the adrenal cortex and are essential for the maintenance of various metabolic and homeostatic functions. Their function is regulated at the tissue level by 11ß-hydroxysteroid dehydrogenases and they signal through the glucocorticoid receptor, a ligand-dependent transcription factor. Clinical observations have linked excess glucocorticoid levels with profound metabolic disturbances of intermediate metabolism resulting in abdominal obesity, insulin resistance and dyslipidaemia. In this review, we discuss the physiological mechanisms of glucocorticoid secretion, regulation and function, and survey the metabolic consequences of excess glucocorticoid action resulting from elevated release and activation or up-regulated signaling. Finally, we summarize the reported impact of weight loss by diet, exercise, or bariatric surgery on circulating and tissue-specific glucocorticoid levels and examine the therapeutic possibility of reversing glucocorticoid-associated metabolic disorders.


Assuntos
Glucocorticoides/metabolismo , Obesidade/fisiopatologia , Redução de Peso , Humanos
8.
Lab Anim ; 53(4): 362-371, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30227760

RESUMO

Gastric bypass surgery, an operation that restricts the stomach and bypasses the duodenum and part of the jejunum, results in major improvement or remission of type 2 diabetes. Duodenual-jejunal bypass was developed by one of the authors (FR) as an experimental, stomach-sparing variant of gastric bypass surgery to investigate weight-independent mechanisms of surgical control of diabetes. Duodenual-jejunal bypass has been shown to improve various aspects of glucose homeostasis in rodents and in humans, thus providing an experimental model for investigating mechanisms of action of surgery and elusive aspects of gastrointestinal physiology. Performing duodenual-jejunal bypass in rodents, however, is associated with a steep learning curve. Here we report our experience with duodenual-jejunal bypass and provide practical tips for successful surgery in rats. Duodenual-jejunal bypass was performed on 50 lean rats as part of a study aimed at investigating the effect of the procedure on the physiologic mechanisms of glucose homeostasis. During the study, we have progressively refined details of anatomic exposure, technical aspects of duodeno-jejunostomy and peri-operative care. We analysed the role of such refinements in improving operative time and post-operative mortality. We found that refinement of exposure methods of the gastro-duodenal junction aimed at minimizing tension on small visceral vasculature, technical aspects of duodeno-jejunal anastomosis and peri-operative management played a major role in improving the survival rate and operative time. Overall, an experimental model of duodenual-jejunal bypass was successfully reproduced. Based on this experience, we describe here what we believe are the most important technical tips to reduce the learning curve for the procedure.


Assuntos
Anastomose Cirúrgica/métodos , Duodeno/cirurgia , Derivação Gástrica/métodos , Jejuno/cirurgia , Ratos/cirurgia , Estômago/cirurgia , Animais , Masculino , Ratos Sprague-Dawley/cirurgia , Ratos Wistar/cirurgia
9.
Pancreas ; 45(7): 967-73, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26731187

RESUMO

OBJECTIVES: Reports have suggested a link between treatment with glucagon-like peptide 1 (GLP-1) analogs and an increased risk of pancreatitis. Oxyntomodulin, a dual agonist of both GLP-1 and glucagon receptors, is currently being investigated as a potential antiobesity therapy, but little is known about its pancreatic safety. The aim of the study was to investigate the acute effect of oxyntomodulin and other proglucagon-derived peptides on the rat exocrine pancreas. METHODS: Glucagon-like peptide 1, oxyntomodulin, glucagon, and exendin-4 were infused into anesthetized rats to measure plasma amylase concentration changes. In addition, the effect of each peptide on both amylase release and proliferation in rat pancreatic acinar (AR42J) and primary isolated ductal cells was determined. RESULTS: Plasma amylase did not increase postpeptide infusion, compared with vehicle and cholecystokinin; however, oxyntomodulin inhibited plasma amylase when coadministered with cholecystokinin. None of the peptides caused a significant increase in proliferation rate or amylase secretion from acinar and ductal cells. CONCLUSIONS: The investigated peptides do not have an acute effect on the exocrine pancreas with regard to proliferation and plasma amylase, when administered individually. Oxyntomodulin seems to be a potent inhibitor of amylase release, potentially making it a safer antiobesity agent regarding pancreatitis, compared with GLP-1 agonists.


Assuntos
Oxintomodulina/farmacologia , Pâncreas Exócrino/efeitos dos fármacos , Peptídeos/farmacologia , Proglucagon/farmacologia , Actinas/genética , Amilases/sangue , Amilases/metabolismo , Animais , Linhagem Celular Tumoral , Células Cultivadas , Exenatida , Expressão Gênica , Glucagon/administração & dosagem , Glucagon/farmacologia , Peptídeo 1 Semelhante ao Glucagon/administração & dosagem , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Injeções Intravenosas , Antígeno Ki-67/genética , Masculino , Oxintomodulina/administração & dosagem , Pâncreas Exócrino/metabolismo , Peptídeos/administração & dosagem , Proglucagon/administração & dosagem , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Peçonhas/administração & dosagem , Peçonhas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA