Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Drug Chem Toxicol ; 45(3): 1098-1108, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-32811196

RESUMO

Garcinia kola seed is used to manage liver diseases in ethnomedicine. However, there is limited information on its role in Cisplatin (CIS)-induced toxicity. Here, we investigated the potential of hexane extract of Garcinia kola (HEGK) in lessening CIS-induced hepatorenal- and gene- toxicity. Male mice (22 ± 3 g) randomly assigned into groups (n = 5) were treated for five days: Corn oil only, HEGK (200 mg/kg), CIS (20 mg/kg; i.p; 48-hours), CIS + HEGK (100 mg/kg), CIS + HEGK (200 mg/kg), CIS + Quercetin (25 mg/kg), and Quercetin(25 mg/kg). Corn oil, HEGK, and Quercetin were administered daily by gavage. GC-MS revealed the presence of 9,19-Cyclolanost-24-en-3-ol as the most abundant component in HEGK, with an LC50 of 1023 µg/mL. HEGK significantly (p < 0.05) scavenged DPPH, inhibited lipid peroxidation and exhibited reducing activity dose-dependently. CIS treatment increased (p < 0.05) urinary albumin and creatinine by 18 and 56%, respectively, serum levels of total bilirubin, creatinine, and hepatic transaminases, while albumin decreased (p < 0.05) by 57%. CIS treatment increased renal and hepatic malondialdehyde (MDA) levels by 67 and 70% individually, while the activities of glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT) and reduced glutathione (GSH) levels were decreased (p < 0.05). Furthermore CIS-induced the formation of mononucleated polychromatic erythrocytes (mnPCEs) 150% in the bone marrow of mice. Histology revealed necrosis of hepatocytes, congestion of renal interstitial vessel, and hyperplasia of the Kupffer cells. Pretreatment with HEGK reduced the levels of MDA, mnPCEs, and increased the activities of antioxidant enzymes and restored GSH to levels comparable in control mice. Taken together, HEGK ameliorated CIS-toxicity via the activation of the antioxidative pathways and mitigated genotoxicity by mitigating mnPCEs formation in mice.


Assuntos
Clusiaceae , Garcinia kola , Albuminas/metabolismo , Albuminas/farmacologia , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Cisplatino/toxicidade , Clusiaceae/metabolismo , Óleo de Milho/farmacologia , Creatinina , Garcinia kola/metabolismo , Glutationa/metabolismo , Hexanos/farmacologia , Peroxidação de Lipídeos , Masculino , Camundongos , Estresse Oxidativo , Extratos Vegetais/farmacologia , Quercetina/farmacologia , Sementes , Superóxido Dismutase/metabolismo
2.
J Biochem Mol Toxicol ; 35(1): e22623, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32881150

RESUMO

Excessive exposure to Copper (Cu) may result in Cu toxicity and adversely affect health outcomes. We investigated the protective role of rutin on Cu-induced brain damage. Experimental rats were treated as follows: group I: control; group II: Cu-sulfate: 200 mg/kg; group III: Cu-sulfate, and rutin 100 mg/kg; and group IV: rutin 100 mg/kg, for 7 weeks. Cu only treatment significantly decreased body weight gain, while rutin cotreatment reversed this decrease. Cu treatment increased malondialdehyde, nitric oxide level, and myeloperoxidase activity and decreased superoxide dismutase and catalase activities in rat brain. Immunohistochemistry showed that COX-2, iNOS, and Bcl-2 proteins were strongly expressed, while Bax was mildly expressed in the brain of Cu-treated rats. Furthermore, brain histology revealed degenerated neurons, and perforated laminae of cerebral cortex in the Cu-only treated rats. Interestingly, coadministration of Cu and rutin reduced the observed histological alteration, improved inflammatory and antioxidant biomarkers, thereby protecting against Cu-induced brain damage via antioxidative and anti-inflammatory mechanisms.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Lesões Encefálicas , Córtex Cerebral/metabolismo , Sulfato de Cobre/toxicidade , Rutina/farmacologia , Animais , Lesões Encefálicas/induzido quimicamente , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/metabolismo , Ciclo-Oxigenase 2/metabolismo , Masculino , Óxido Nítrico Sintase Tipo II/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Wistar
3.
J Biochem Mol Toxicol ; 34(8): e22502, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32227675

RESUMO

Protocatechuic acid (PA) is a polyphenol-recognized for its efficacy as an antioxidant-possesses anticancer, anti-inflammatory, antioxidant properties. The efficacy of PA in the management of benign prostatic hyperplasia (BPH) has not been investigated. Forty-two castrated rats (n = 7) were treated as follows: control (corn oil), BPH only received testosterone propionate (TP) (TP 3 mg/kg intraperitoneally), BPH + PA (TP 3 mg/kg + PA 40 mg/kg), BPH + finasteride (Fin) (TP 3 mg/kg + Fin 10 mg/kg), PA only (40 mg/kg: by gavage), and Fin only (10 mg/kg: by gavage) for 4 weeks. In BPH rats, there were significant (P < .05) increases in prostatic (250%) and organosomatic (280%) weights compared with controls. Cotreatment decreased prostatic weights by 19% (PA) and 21% (Fin). Markers of inflammation: myeloperoxidase activities increased in serum (148%) and prostate (70%), as well as nitric oxide levels serum (92%) and prostatic (95%). Proinflammatory cytokines interleukin-1ß and tumor necrosis factor-α increased by 3.6- and 2.8-fold. Furthermore, prostatic malondialdehyde, superoxide dismutase, and serum total acid phosphatase increased by 97%, 25%, and 48%, respectively. Histology revealed poor architecture and severe proliferation of the prostate in BPH rats. Inflammation and oxidative stress markers, as well as the histological alteration in BPH rats, was attenuated (P < .05) upon cotreatment with PA and comparable with Fin cotreatment. These results suggest that PA mitigates oxido-inflammatory responses and restored prostatic cytoarchitecture to levels comparable with control in rats induced with BPH.


Assuntos
Castração , Hidroxibenzoatos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Hiperplasia Prostática/metabolismo , Testosterona/administração & dosagem , Animais , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Masculino , Hiperplasia Prostática/induzido quimicamente , Hiperplasia Prostática/patologia , Ratos , Ratos Wistar , Testosterona/farmacologia
4.
Environ Sci Pollut Res Int ; 26(26): 27470-27481, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31332682

RESUMO

Unanticipated increase in the use of silver (Ag) and copper oxide (CuO) nanoparticles (NPs) due to their antimicrobial properties is eliciting environmental health concern because of their coexistence in the aquatic environment. Therefore, we investigated the genetic and systemic toxicity of the individual NPs and their mixture (1:1) using the piscine micronucleus (MN) assay, haematological, histopathological (skin, gills and liver) and hepatic oxidative stress analyses [malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT)] in the African mud catfish, Clarias gariepinus. The fish were exposed to sublethal concentrations (6.25-100.00 mg/L) of each NP and their mixture for 28 days. Both NPs and their mixture induced significant (p < 0.05) increase in MN frequency and other nuclear abnormalities. There was significant decrease in haemoglobin concentration, red and white blood cell counts. Histopathological lesions observed include epidermal skin cells and gill lamellae hyperplasia and necrosis of hepatocytes. The levels of MDA, GSH and activities of SOD and CAT were impacted in C. gariepinus liver following the exposure to the NPs and their mixture. Interaction factor analysis of data indicates antagonistic genotoxicity and oxidative damage of the NPs mixture. These results suggest cytogenotoxic effects of Ag NPs, CuO NPs and their mixture via oxidative stress in Clarias gariepinus.


Assuntos
Peixes-Gato , Cobre/toxicidade , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Catalase/metabolismo , Peixes-Gato/metabolismo , Ecotoxicologia , Proteínas de Peixes/metabolismo , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Brânquias/patologia , Glutationa/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Malondialdeído/farmacologia , Testes para Micronúcleos , Estresse Oxidativo/efeitos dos fármacos , Prata/química , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/patologia , Superóxido Dismutase/metabolismo
5.
Tokai J Exp Clin Med ; 41(1): 14-21, 2016 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-27050890

RESUMO

BACKGROUND: Tuberculosis (TB) is an infectious disease of international health priority. The combination of anti-TB drugs (4-Tabs)- isoniazid (INH), rifampicin (RIF), pyrazinamide (PZA) and ethambutol (ETB) are effective in the management of the disease, however, their toxic effect is a major concern. PURPOSE: The study was designed to evaluate the toxicity of anti-TB drugs in male Wistar rats and possible ameliorative effects of kolaviron (KV), a biflavonoid from Garcinia kola seeds. METHODS: Twenty-eight rats were assigned into four groups; Group 1 (Control) received corn oil, Group 2 (4-Tabs) received therapeutic doses of INH (5 mg/kg), RIF (10 mg/kg), PZA (15 mg/kg) and ETB (15 mg/kg) in combination, Group 3 (4-Tabs + KV) received INH, RIF, PZA, ETB and KV (200 mg/kg) and Group 4 (KV) received KV (200 mg/kg) by oral gavage three times per week for 8 consecutive weeks. RESULTS: Administration of 4-Tabs caused oxidative stress resulting in significant (p = 0.031, 0.027) increase in malondialdehyde levels in the liver and kidney of rats by 101% and 34%, respectively. Also, 4-Tabs caused significant (p = 0.023-0.035) elevation of serum alanine and aspartate aminotransferases by 41% and 48%, creatinine by 252% and total bilirubin by 89%, respectively. In contrast, hepatic and renal antioxidant indices- reduced glutathione, glutathione peroxidase, glutathione-s-transferase and superoxide dismutase were significantly (p = 0.028-0.039) decreased in 4-Tabs-treated rats. Co-administration of KV with 4-Tabs significantly restored the antioxidant parameters and biochemical indices to near normal. CONCLUSION: These findings suggest that anti-TB drugs elicit oxidative damage in liver and kidney of rats while KV protects against the adverse effects via antioxidative mechanism.


Assuntos
Antioxidantes , Antituberculosos/efeitos adversos , Antituberculosos/toxicidade , Flavonoides/farmacologia , Garcinia kola/química , Rim/metabolismo , Fígado/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Alanina Transaminase/metabolismo , Animais , Aspartato Aminotransferases , Etambutol/efeitos adversos , Etambutol/toxicidade , Flavonoides/isolamento & purificação , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Isoniazida/efeitos adversos , Isoniazida/toxicidade , Masculino , Malondialdeído/metabolismo , Pirazinamida/efeitos adversos , Pirazinamida/toxicidade , Ratos Wistar , Rifampina/efeitos adversos , Rifampina/toxicidade , Sementes/química
6.
J Basic Clin Physiol Pharmacol ; 27(1): 29-37, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26247507

RESUMO

BACKGROUND: Aspartame (N-L-α-aspartyl-L-phenylalanine-1-methyl ester) (ASP) is a synthetic sweetener used in foods and its safety remains controversial. The study was designed to investigate the effects of long-term administration of aspartame on redox status, lipid profile and biochemical indices in tissues of male Wistar rats. METHODS: Rats were assigned into four groups and given distilled water (control), aspartame at doses of 15 mg/kg (ASP 1), 35 mg/kg (ASP 2) and 70 mg/kg (ASP 3) daily by oral gavage for consecutive 9 weeks. RESULTS: Administration of ASP 2 and ASP 3 significantly increased the weight of liver and brain, and relative weight of liver of rats. Lipid peroxidation products significantly increased in the kidney, liver and brain of rats at all doses of ASP with concomitant depletion of antioxidant parameters, viz. glutathione-s-transferase, glutathione peroxidase, superoxide dismutase, catalase and reduced glutathione. Furthermore, ASP 2 and ASP 3 significantly increased the levels of gamma glutamyl transferase by 70% and 85%; alanine aminotransferase by 66% and 117%; aspartate aminotransferase by 21% and 48%; urea by 72% and 58% and conjugated bilirubin by 63% and 64%, respectively. Also, ASP 2 and ASP 3 significantly increased the levels of total cholesterol, triglycerides and low-density lipoprotein cholesterol in the rats. Histological findings showed that ASP 2 and ASP 3 caused cyto-architectural changes such as degeneration, monocytes infiltration and necrotic lesions in brain, kidney and liver of rats. CONCLUSIONS: Aspartame may induce redox and lipid imbalance in rats via mechanism that involves oxidative stress and depletion of glutathione-dependent system.


Assuntos
Aspartame/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Edulcorantes/toxicidade , Animais , Antioxidantes/metabolismo , Aspartame/administração & dosagem , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Catalase/metabolismo , Relação Dose-Resposta a Droga , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Lipídeos/química , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Oxirredução/efeitos dos fármacos , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo , Edulcorantes/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA