Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Inst Mech Eng H ; 235(11): 1335-1355, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34247529

RESUMO

Uncontrolled proliferation of cells in a tissue caused by genetic mutations inside a cell is referred to as a tumor. A tumor which grows rapidly encounters a barrier when it grows to a certain size in presence of preexisting vasculature. This is the time when it has to find a way to go on the growth. The tumor starts to secrete tumor angiogenic factors (TAFs) and stimulate preexisting vessels to grow new sprouts. These new sprouts will find their way to the tumor in the extracellular matrix (ECM) by the gradient of TAF. As these new capillaries anastomose and reach tumor, fresh oxygen is available for the tumor and it will reinitiate the growth. Number of initial sprouts, distance of initial tumor cells from the vessel(s) and initial density of the tumor at the time of sprout formation are questions which are to be investigated. In the present study, the aim is to find the response of tumor cells and vessels to the reciprocal effects of each other in different circumstances in the tissue. Together with a mathematical formulation, a radial basis function (RBF) neural network is established to predict the number of tumor cells at different circumstances including size and distance of initial tumors from the parent vessel. A final formulation is given for the final number of tumor cells as a function of initial tumor size and distance between a parent vessel and a tumor. Results of this simulation demonstrate that, increasing the distance between a tumor and a parent vessel decreases the number of final tumor cells. Specially, this decrement becomes faster beyond a certain distance. Moreover, initial tumors in bigger domains must become much bigger before inducing angiogenesis which makes it harder for them to survive.


Assuntos
Neoplasias , Microambiente Tumoral , Simulação por Computador , Humanos , Modelos Biológicos , Redes Neurais de Computação , Carga Tumoral
2.
Microcirculation ; 27(1): e12584, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31390104

RESUMO

OBJECTIVES: The aim of this study was to investigate the response of a tumor and parent vessels to stimulating factors in the tumor microenvironment in different configurations. How a tumor grows and induces angiogenesis in different distances of a parent vessel is investigated. Moreover, interstitial fluid pressure and its effects on tumor cell phenotype are considered in the model. METHODS: A multiscale continuum-discrete model of a vascular tumor is utilized to simulate the growth of a cluster of tumor cells positioned in different distances of parent vessels. An agent-based probabilistic angiogenesis model is coupled to a discrete tumor model to simulate branching, anastomosis, blood flow, wall shear stress, and interstitial tumor pressure in which tumor cells are divided to necrotic, hypoxic, and proliferative. RESULTS: Starting the simulations from 9 initial tumor cells, the model proved that tumors grow to a certain size and also reach to a certain distance before being able to induce sprouting. For tumors placed 2 and 2.5 mm away from a parent vessel, initiation of angiogenesis is delayed significantly in comparison with closer distances. For the initial cluster positioned in a distance of 2.5 mm away, first sprout is seen after 47 days. Moreover, dendritic shape of the tumor is seen prior to angiogenesis which is a sign of cells being starved and wandered in the domain to reach the oxygen source. The trend of tumor growth obeys power law function which aligns with the experimental results. DISCUSSION: The mathematical model revealed the importance of geometry and position of an initial tumor cluster in determining the behavior and final architecture of a vascular tumor. As a tumor cell appears in farther distances from a parent vessel, duration of its growth and inducing angiogenesis becomes longer and the chance of suppressing the tumor in the initial days of growth is higher. Also, the importance of angiogenesis in making tumors devastating is again corroborated by mathematical models.


Assuntos
Modelos Cardiovasculares , Neovascularização Patológica/fisiopatologia , Neoplasias Vasculares , Animais , Humanos , Neoplasias Vasculares/irrigação sanguínea , Neoplasias Vasculares/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA