Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(34): 24516-24533, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39108972

RESUMO

Surfactants can reduce the interfacial surface tension between two immiscible liquids making them a desirable component for various industrial applications. However, the toxic nature of chemical surfactants brought immense attention towards biosurfactants. Being biodegradable, biosurfactants are eco-friendly and considered safer for different commercial uses. This study focused on the production of biosurfactant from an oil-degrading bacteria and its functional efficacy for prospective industrial applications. Here, a promising oil-tolerant strain, Bacillus velezensis S2 was isolated from oil contaminated sites which showed >50% degradation of convoluted crude oil within 28 days in comparison to a control. The isolate was then found to produce an excellent surface-active compound with an emulsification index of 67.30 ± 0.8% and could reduce the surface tension up to 36.86 ± 0.36 mN m-1. It also manifested a critical micelle concentration of 45 mg L-1 while reducing the surface tension from 72 to 30 mN m-1. When extracting biosurfactant from isolated bacteria, ethyl acetate extraction showed 1.5 times greater efficacy than chloroform : methanol extraction. The purified biosurfactant was characterized using TLC, 1H NMR, 13C NMR, FTIR, elemental analyses and spectrophotometric techniques leading to its identification as a rhamnolipid. The stability of produced biosurfactant at higher temperature (up to 180 °C) was determined by thermal analysis, endorsing its application in high temperature reservoir conditions. Additionally, the extracted biosurfactant showed excellent foaming efficacy with insignificant antibacterial and cytotoxic responses, which indicates their potential application in cleaning and cosmetics industries. Thus, the present study outlines a bi-functional novel isolate Bacillus velezensis S2 which could play a significant role in oil remediation from the environment as well as serve as a potential source of non-toxic and eco-friendly biosurfactants for various industrial applications.

2.
Heliyon ; 10(14): e34548, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39114063

RESUMO

Organochlorine pesticides (OCPs) are persistent organic compounds found in aquatic environments worldwide. A well-validated and well-established analytical method is crucial for detecting OCPs in the environment. In this study, an analytical method for quantifying OCPs in water was developed and evaluated. Here, the range of linearity, reproducibility, uncertainty, specificity, method detection limits (MDL), and special emphasis on detection and quantitation limits were assessed. Recovery studies were performed to measure the accuracy and precision of the method. This method exhibited excellent linearity in the range of 2.5-20 µg/L for all compounds. As none of the targeted compounds was detected in the chromatograms of the blank sample with no baseline noise, the limits of detection (LOD) and limits of quantification (LOQ) were determined using the linear regression method, external calibration curve slope, and laboratory fortified blank-based detection. All compounds showed different LOD and LOQ values, depending on the approach used. In particular, endosulfan sulfate, methoxychlor, endrin ketone, H. epoxide, heptachlor, and 4,4'-DDT exhibited high detection limits. The recovery percentage of the 15 compounds at 5 µg/L spiked concentration was between 50 and 150 %, which is consistent with the accuracy of the APHA method. Except for endosulfan sulfate, the relative standard deviations of all other compounds were below 20 %, indicating good precision. This method has also been applied to real water samples. This validation technique is reliable, sensitive, simple, rapid, easy to comprehend, and reproducible. The application of this method in the real water samples was also conducted. Only α-BHC and γ-Chlordane were detected in the water sample.

3.
Heliyon ; 10(13): e33507, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39035538

RESUMO

In the delta region of Bangladesh, Sonneratia apetala, also known as Keora and mangrove apple, is widely recognized for its dual role as a source of both food and medicine. Seasonal S. apetala fruits were gathered from Hatiya, Noakhali, in October 2021. The samples were segregated into pericarps and seeds, then fractionated into methanol segments. The anti-proliferative activities of these samples against lung A549 cells were evaluated using the Trypan blue exclusion method. Additionally, High-Performance Liquid Chromatography (HPLC) was employed to quantify phenolic compounds, while standard protocols facilitated the identification of specific phytochemical constituents. Chemical profiling via Gas Chromatography-Mass Spectrometry (GC-MS) and the isolation and detection of bioactive compounds through column chromatography and Nuclear Magnetic Resonance (NMR) analysis were undertaken. The methanol fractions of the seeds and pericarp were found to contain carbohydrates, tannins, flavonoids, steroids, alkaloids, glycosides, and terpenoids, with the absence of saponins and anthraquinones. Notably, the anti-proliferative effect demonstrated statistical significance at a concentration of 300 µg/mL for both extracts. Furthermore, HPLC analysis identified and quantified six polyphenols: catechin hydrate, (-)-epicatechin, rutin hydrate, trans-ferulic acid, trans-cinnamic acid, myricetin, and kaempferol, with the following concentrations: 46.65 and 12.72; 349.29 and 140.39; 5.26 and 33.06; 10.35 and 29.28; ND and 11.93; and 10.03 and 7.90 mg/100 g in the methanol fraction of the seed and pericarp, respectively. GC-MS analysis of S. apetala fruit revealed five notable compounds with significant peak areas (%): 2-methyltetracosane, tetratetracontane, heptacosane, 1-chloro-2-hexyl-1-octanol, and phenol, 3,5-bis(1,1-dimethylethyl), exhibiting peak areas of 43.96, 35.8, and 15.95, respectively. Meanwhile, the notable peak in S. apetala seeds was 1,3-benzenedicarboxylic acid, bis(2-ethylhexyl) ester, with a peak area (%) of 100. These compounds are known for their anticancer and antioxidant properties. Therefore, S. apetala, particularly its seeds and fruits, shows promising potential for development into dietary supplements and functional foods.

4.
J Hazard Mater ; 465: 133214, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38101007

RESUMO

Eleven trace metals (Cd, Cr, Fe, Mn, Cu, Ni, Co, Zn, As, Pb, and Ag) in sediments of Bangladesh's ship breaking area were measured by an atomic absorption spectrometer to determine origin, contamination extent, spatial distributions, and associated ecological and human health hazards. This study found considerable quantities of Pb, Cd, Mn, Zn, and Cu when compared with standards and high levels of Pb, Cd, Zn, Cu, As, and Ag contamination according to pollution evaluation indices. Different indices indicate most of the sampling sites were highly polluted. However, spatial distribution maps indicate that trace metals were predominantly deposited in the northern and southern region. The ecological risk index revealed that Cd has the highest while Pb and As had moderate risk. Based on the health index values, Zn for both adults and children were higher than the safe limit while Mn, Pb, Cr, As, Fe, Cu, Ni, and Co for children were close to the threshold. The mean total carcinogenic risk values of Cr, As, and Ni for children and Ni for adults exceeded the permissible threshold. The cancer risk possibilities were further assessed using Monte Carlo simulation. Most trace metals have anthropogenic origins, which were attributed to ship breaking activities.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Adulto , Criança , Humanos , Metais Pesados/análise , Monitoramento Ambiental , Bangladesh , Navios , Cádmio , Chumbo , Sedimentos Geológicos , Medição de Risco , Poluentes Químicos da Água/análise , China
5.
Environ Sci Pollut Res Int ; 30(45): 100828-100844, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37644270

RESUMO

Tobacco products are widely recognized as a major contributor to death. Cigarette smoke contains several toxic chemicals including heavy metals particulate causing high health risks. However, limited information has been available on the health risks associated with the heavy metals in cigarettes commonly sold in the Bangladeshi market. This study evaluated the concentrations and potential health risks posed by ten concerned heavy metals in ten widely consumed cigarette brands in Bangladesh using an atomic absorption spectrometer. The concentration (mg/kg) ranges of heavy metals Pb, Cd, Cr, As, Co, Ni, Mn, Fe, Cu, and Zn vary between 0.46-1.05, 0.55-1.03, 0.80-1.2, 0.22-0.40, 0.46-0.78, 2.59-3.03, 436.8-762.7, 115.8-184.4, 146.6-217.7, and 34.0-42.7, respectively. We assume that the heavy metals content among cigarette brands is varied due to the differences in the source of tobacco they use for cigarette preparation. The carcinogenic risks posed by heavy metals follow the order of Cr > Co > Cd > As > Ni > Pb, while the non-carcinogenic risks for Cu, Zn, Fe, and Mn were greater than unity (HQ > 1), except for Fe. The existence of toxic heavy metals in cigarette tobacco may thus introduce noticeable non-carcinogenic and carcinogenic health impacts accompanying inhalation exposure. This study provides the first comprehensive report so far on heavy metal concentration and associated health risks in branded cigarettes commonly sold in Bangladesh. Hence, this data and the information provided can serve as a baseline as well as a reference for future research and have potential implications for policy and legislation in Bangladesh.

6.
Heliyon ; 9(8): e18465, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37560670

RESUMO

Concentration, source, ecological and health risks of sixteen polycyclic aromatic hydrocarbons (PAHs) were estimated for water and sediment samples of two urban rivers namely Buriganga River (BR) and Dhaleswari River (DR). The mean concentration of ∑PAHs in BR water and sediment were 9619.2 ngL-1 and 351.6 ngg-1, respectively. Furthermore, the average PAH concentrations detected in DR water and sediment were 1979.1 ngL-1 and 792.9 ngg-1, respectively. The composition profile showed that 3-ring PAHs were dominant in the water matrix; however, 5-ring PAHs were prevalent in the sediment samples of both rivers. Sources apportion study of PAHs indicated that mixed combustion and petroleum sources are responsible for PAHs contamination in the rivers. Ecological risk study of water suggested that the aquatic lives of both rivers are threatened by Fla, BbF, BkF, DahA, and IcdP, as presented above the threshold level. Comparison with sediment quality guidelines (SQGs) indicated that adverse effects might cause occasionally in the sediment ecosystem in DR at certain sampling sites for Nap, Acy, Fl, Phe, Ant, Pyr, Chr, BaP, and DahA. On the other hand, the presence of Nap, Acy and DahA might occasionally cause adverse biological effects in the BR sediment ecosystem. Estimated hazard quotient (HI > 1) and carcinogenic risk (CRtotal > 10-4) values indicated that local inhabitants living in the vicinity of the rivers are prone to high health risks.

7.
Environ Sci Pollut Res Int ; 30(37): 88132-88154, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37436631

RESUMO

The coastal areas of Bangladesh have poor accessibility to fresh drinking water and the groundwater is not suitable for drinking, cooking, and other domestic uses due to high levels of salinity and potentially toxic elements. The current study focuses on understanding of the distribution of some physicochemical parameters (temperature, pH, EC, TDS, and salinity) and chemical elements (Fe, Mn, Zn, Ca, Mg, Na, K, Cu, Co, Pb, As, Cr, Cd, and Ni) with health perspective in drinking water from the southwestern coastal area of Bangladesh. The physicochemical properties of the water samples were examined with a multiparameter meter, while the elemental concentrations were analyzed using atomic absorption spectrometer. Water quality index (WQI) and irrigation indices were utilized to determine the drinking water quality and irrigation feasibility, respectively, whereas hazard quotients (HQs) and hazard index (HI) were used to assess the probable pathways and the associated potential risks to human health. The concentrations of some toxic elements in measured samples were relatively higher compared to drinking water guidelines, indicating that ground and surface water are not apt for drinking and/or domestic uses. The multivariate statistical approaches linked the source of the pollutants in the studied water body mostly to the geogenic origin including saline water intrusion. WQI values ranged from 18 to 430, reflecting excellent to unsuitable categories of water quality. The assessment of human health risks due to exposure to contaminated water demonstrated both carcinogenic and non-carcinogenic health risks in the exposed residents of the study area. Therefore, appropriate long-term coastal area management strategies should be adopted in the study region for environmental sustainability. The findings of this research will be supportive in understanding the actual situation of fresh drinking water in the area for policymakers, planners, and environmentalists to take effective necessary measures to ensure safe drinking water in the study area.


Assuntos
Água Potável , Água Subterrânea , Metais Pesados , Poluentes Químicos da Água , Humanos , Qualidade da Água , Monitoramento Ambiental , Bangladesh , Poluição da Água , Água Subterrânea/química , Poluentes Químicos da Água/análise , Medição de Risco , Metais Pesados/análise
8.
Heliyon ; 9(4): e14587, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37035360

RESUMO

Microplastics (MPs) are prevalent in nature due to the proliferation of plastic in the environment. However, the presence of microplastics in lakes is largely unknown in comparison to other aquatic bodies. This study was performed to evaluate the abundance and characteristics of MPs in water, sediment, and fish from three major urban lakes in Dhaka, Bangladesh, namely Dhanmondi, Gulshan, and Hatir Jheel lake. The highest concentrations of microplastics in surface water (36 items/L), sediment (67 items/kg), fish (17 items/individual), and the gastrointestinal tract (4.88 items/gm) were observed. Highest abundance of microplastic in an individual fish was observed in Oreochromis mossambicus from Dhanmondi Lake. The samples were visually examined using stereomicroscope and SEM, which revealed that films were the most prevalent kind of microplastics in both the water and the sediment samples, whereas pellets and foams predominated in the fish samples. Visual observation also revealed MPs dominated by <100 µm in size and transparent in color. According to the Fourier Transform Infrared (FTIR) analysis, the dominant polymers in the analyzed samples were high-density polyethylene, low-density polyethylene, ethylene vinyl acetate, polyvinyl chloride, polycarbonate, cellulose acetate, and polypropylene. MPs were relatively higher in the water and sediment samples of Gulshan Lake, and fish samples of Dhanmondi Lake. The results of this study indicate that microplastic contamination has occurred not only in the water and sediment but also in the inhabitant fishes of the lakes. However, it is discovered that the microplastic intake of fish was significantly related to body weight and length. The implication of the finding suggests that the presence of MPs in urban lakes has raised concerns about the potential human health impact.

9.
Heliyon ; 9(1): e13027, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36711290

RESUMO

The scarcity of freshwater in most of the megacities in the world is an important concern. In this regard, scientifically harvested rainwater could provide an effective measure to this crisis. In this attempt, we developed a cost-effective sensor-based automated first-flush rainwater harvesting system (RHS) to improve the freshwater scarcity and economic development of megacities like Dhaka, Bangladesh. To investigate the performance of the developed system, a suit of representative rainwater samples was systematically collected, preserved, and assessed between the months of July-December 2021 for water quality parameters such as physicochemical (pH, EC, TDS, DO, hardness, and alkalinity), anions (F-, Cl-, NO2 -, NO3 -, Br-, and SO4 2-), elemental (Ca, Mg, Cr, As, Cd, Hg, Pb, Be, Ni, Se, and Fe), and microbial contamination analysis. A Multiparameter digital meter and a titrimetric method were employed for measuring the physicochemical properties whereas elemental concentration was detected using an inductively coupled plasma-mass spectrometer and atomic absorption spectrometer. The changes in microbial contamination in the preserved rainwater were investigated from time to time during the whole experimental period. The findings showed that the mean pH (6.90) and concentrations (mg/L) of other concerning parameters such as TDS (15.5), DO (7.26), hardness (14.9), Cl- (3.59), NO3 - (4.84), SO4 2- (4.62), Fe (<0.2), Cr (0.086 µg/L), As (0.224 µg/L), Cd (0.260 µg/L), Hg (0.270 µg/L), and Pb (5.530 µg/L) in the harvested rainwater samples were below the WHO drinking water guidelines and literature data implying that the harvested rainwater derived from the developed RHS is completely safe for drinking and other uses even in respect to the microbial contamination (total bacterial counts: 0-15 CFU/mL, and total and fecal coliform less than 1.8 MPN/100 mL) for long storage. Hence, this technology has a huge opportunity to mitigate safe freshwater scarcity and groundwater depletion issues, especially in megacities such as Dhaka, Bangladesh.

10.
Environ Sci Pollut Res Int ; 30(16): 46222-46233, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36715797

RESUMO

Elemental contamination in cosmetics is a serious health concern as it can pose a cumulative effect on the user's body over a long period. The prime motive of the study was to assess the concentration of 10 concerning chemical elements (Pb, Cd, Cr, As, Co, Ni, Cu, Zn, Fe, and Mn) in imported and local lipsticks and eye pencil samples collected from retail outlets in central Bangladesh (Dhaka city) and to assess their dynamic health risks for users. A total of 18 lipsticks and 24 eye pencils were studied and concentrations of chemical elements were examined with atomic absorption spectrophotometer. The health risk assessment was performed for dermal and ingestion routes of the contaminants. The results reveal that the concentrations of the examined elements vary with colors, brands, and origins. Pb and As concentrations were found below the permissible limit but Cr concentration in some samples exceeded the allowable limit in cosmetics. Cd was not detected in any samples; however, other examined elements such as Co, Ni, Cu, Mn, Zn, and Fe were detected in considerable concentrations. Elements like Mn, Zn, and Fe were found at high levels. In the case of lipstick samples, elemental concentrations followed the order of Fe > Zn > Mn > Ni > Cr > Cu > Pb > Co > As, while the order was Fe > Cu > Mn > Zn > Ni > Cr > Co > Pb > As for eye pencil samples. Results of the hazards quotient (HQ) indicate that there were no non-carcinogenic or carcinogenic risks of elements in samples for dermal exposure. But the cancer risk values of Cr (HQ > 1 for ingestion) in brown color lipsticks and Ni indicate that lipsticks have some carcinogenic effects if they enter the user's body. Dermal cancer risk for eye pencils has also been calculated and for Pb, Cr, Ni, and As; the values were found within the acceptable ranges of 10-6-10-4. It is suggested that the allowable limit of all toxic elements in cosmetics must be established. Furthermore, continuous monitoring is urgently needed for personal care products like lipsticks and eye pencils commonly available in the local markets in the country like Bangladesh.


Assuntos
Cosméticos , Metais Pesados , Humanos , Bangladesh , Chumbo , Monitoramento Ambiental/métodos , Medição de Risco/métodos , Cosméticos/análise , Carcinogênese , Metais Pesados/análise
11.
Environ Sci Pollut Res Int ; 30(6): 16210-16235, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36181596

RESUMO

The concentrations of eleven heavy metals (Pb, Cd, Cr, Fe, Mn, Zn, Cu, Ni, Co, As, and Ag) were assessed in both groundwater and seawater collected from the ship-breaking industrial area of Bangladesh using an atomic absorption spectrometer. The investigation aimed to estimate the water quality and pollution level employing several indices, and its associated health risks for the first time in that area. This study found that Cd, Cr, Fe, Pb, Mn, and Ni were higher in both groundwater and seawater compared with WHO standards. Based on the WQI (water quality index) and EWQI (entropy water quality index) classifications, the quality of most of the groundwater is extremely poor or unsuitable for drinking purposes. Furthermore, the HPI (heavy metal pollution index), HEI (heavy metal evaluation index), and CD (degree of contamination) values of most groundwater and all seawater samples exhibit a higher degree of pollution. In addition, the results of NI (Nemerow pollution index) come to an end that both groundwater and seawater in the study area are mostly polluted by Fe, Mn, Pb, Cr, and Cd. Although the HI (hazard quotient index) values of almost all studied heavy metals in both cases of adults and children are within the safe limit, the HI value of Cr for an adult is near the threshold limit and the maximum HI value of Cr for children exceeds this limit. The carcinogenic risk reveals that Cr, Pb, As, and Cd produce detrimental effects on local people through the direct ingestion of groundwater. The pollution source is identified using principal component analysis and a Pearson correlation matrix as being primarily anthropogenic and attributed to intensive ship-breaking activities or other industries in the area.


Assuntos
Água Subterrânea , Metais Pesados , Poluentes Químicos da Água , Adulto , Criança , Humanos , Qualidade da Água , Monitoramento Ambiental/métodos , Bangladesh , Navios , Chumbo/análise , Metais Pesados/análise , Água do Mar , Medição de Risco , Poluentes Químicos da Água/análise
12.
Arch Microbiol ; 204(3): 199, 2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35220488

RESUMO

This study was aimed to evaluate eggplant's growth-enhancing activity of chlorpyrifos and diazinon-degrading endophytic and rhizospheric soil bacteria isolated from cauliflower and tomato roots and the rhizospheric soil of rice roots, respectively. The identified endophytes belong to the Acinetobacter, Enterobacter and Klebsiella genera, while rhizospheric soil isolates belong to Pantoea, Acinetobacter, Kosakonia, Morganella, Enterobacter, and Klebsiella genera with species variation and genetic distances. All the strain's consumed 100% (50 mg/5 mL) chlorpyrifos and diazinon after 14 days of exposure, except for Pantoea sp. HSTU-Sny4 (84%) and Kosakonia sp. HSTU-ASn39 (42%). The strain's exhibited N-fixation, P-solubilization, indole-3-acetic acid (IAA), and ACC-deaminase production capabilities. The individual strain's and consortium treatment enhanced eggplant growth at germination, seedling, vegetative and reproductive stages. Plant growth-promoting genes, e.g., nif-cluster, chemotaxis, phosphates, sulfur, abiotic stress, chemotaxis, biofilm formation and organophosphorus insecticide-degrading genes were annotated in Klebsiella sp. HSTU-Sny5 and Morganella sp. HSTU-ASny43 genomes. Importantly, the mixed consortium supplemented with 40% urea-treated eggplants demonstrated similar growth parameters compared to the 100% urea eggplants. Plenty of insecticide-degrading proteins belonged to HSTU-Sny5 and HSTU-ASny43 strain's and had interacted with 100 different insecticides as confirmed in virtual screening. This research has a significant role in reducing the application of chemical fertilizer and bioremediation of pesticides in agriculture.


Assuntos
Inseticidas , Solanum melongena , Endófitos , Inseticidas/metabolismo , Inseticidas/farmacologia , Compostos Organofosforados/metabolismo , Raízes de Plantas/microbiologia , Solo , Solanum melongena/metabolismo
13.
Chemosphere ; 294: 133556, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35007611

RESUMO

To understand the mechanistic pathway of arsenic (As) enrichment and mobilization in groundwater (southeastern Bangladesh) and to evaluate the water quality as well as associated health risks, a suite of systematically collected groundwater samples (depth: 17-61 m) were analyzed. Arsenic concentrations (µg L-1) in the groundwater samples were ranged from 6 to 581 with a mean value of 199 which is significantly higher than the recommended values. The assessment of water quality using entropy water quality index and irrigation water quality indices revealed that the groundwater in the studied region was not recommended for drinking and irrigation, respectively with few exceptions. Dominant water types in the studied area were Ca-Mg-HCO3, Na-HCO3, and Na-Cl types. Various forms of water-rock interactions, leaching of evaporates, and the confined nature of the aquifer mostly control the hydro-chemical parameters. Fe/Mn bound As are likely to be released in the aquifer through the dissolution of carbonate minerals of Fe/Mn while the higher degree of water-rock interaction and probable oxidation of organic materials helped to elevate As concentration. The probable longer residence time of groundwater guided by topographic slope and the neighboring clayey aquitard govern the As mobilization in the aquifer. Probabilistic health risk assessment revealed that groundwaters from the studied area can cause both non-carcinogenic and carcinogenic health risks.


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Arsênio/análise , Bangladesh , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Qualidade da Água
14.
Environ Sci Pollut Res Int ; 29(12): 17499-17512, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34664170

RESUMO

Substantial quantity of fish has been imported to Bangladesh without adequate food safety assessment which can pose a serious health risk to local people. This study analyzed the trace metals and organochlorine pesticides residues and the associated human health risk in 33 imported fishes (9 species) from four countries (India, Myanmar, Oman, and United Arab Emirates) collected from three different ports (Benapole, Bhomra, and Chittagong) of Bangladesh with invoice lists from the port authorities. Trace metal concentrations were determined using graphite furnace absorption spectrometry and flame absorption spectrometry. The two organochlorine pesticides (Aldrin and Chlordane) residues were determined by GC-MS and found as below detection level (BDL). The trace metal concentrations (mg/kg-ww) in imported fish samples ranged as As 0.008 to 0.558, Pb 0.004 to 0.070, Cr 0.010 to 0.109, Cd 0.00 to 0.083, Ni 0.011 to 0.059, Co BDL to 0.067, Mn BDL to 0.0780, Fe 1.780 to 10.77, Cu 0.055 to 0.632, and Zn 0.898 to 9.245. Concentrations of As and Cd were higher than the food safety guideline. Considering the source country of imported fishes, fish samples from Oman were mostly contaminated by the trace metals. The estimated daily intake (EDI) was higher for Cr. However, the target hazard quotient (THQ) for individual metal and total THQ for combined metals were lower than 1, indicating no apparent non-carcinogenic health risk for consumers. The cancer risk (CR) was within the acceptable range. But extensive monitoring of these toxic chemicals is needed prior to import these fishes to the country. Given the self-sufficiency in fish production, this study also argues whether Bangladesh needs to import the fishes at all.


Assuntos
Metais Pesados , Resíduos de Praguicidas , Poluentes Químicos da Água , Animais , Bangladesh , Monitoramento Ambiental , Peixes , Contaminação de Alimentos/análise , Humanos , Metais Pesados/análise , Resíduos de Praguicidas/análise , Medição de Risco , Poluentes Químicos da Água/análise
15.
Heliyon ; 7(6): e07270, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34189313

RESUMO

Pesticides are chemical compounds used worldwide for different purposes. These chemicals are well known for their long life, high toxicity, and slow degradation process. Many developed countries including South Asian countries banned the use of pesticides for their adverse effects. However, several pesticides are found incessantly in water and soil. To highlight the recent situation of pesticide contamination in South Asian river systems, we have studied 136 relevant articles published from 2015 to 2020. Articles were gathered using several commonly available search engines and organized according to information related to river systems of South Asian countries. After thoroughly examining those research articles, we summarized that most of the river systems are contaminated by pesticides, where DDTs, HCHs, endosulfan, heptachlor, and chlorpyrifos are the key recognized compounds among them. Comparing the level of pesticides with standard guidelines, we found that the Tapi River and Chilika Lake of India are considerably more contaminated than other river basins. Multivariate analyses identified the industrial discharge and agricultural run-off of chemicals as the probable sources of pesticides in these rivers. By analyzing the amount of annual pesticide production, their use, and accordingly their considerable presence in the water systems of the South Asian countries, it is evident that the banned pesticides are used regularly by these countries and thus contaminating the environment. Therefore, the formulations of appropriate rules and their enforcement to control the manufacture and solicitation of such pesticides are an urgent need to save the environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA