Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 357: 161-174, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36965857

RESUMO

The prognosis of brain cancers such as glioblastoma remains poor despite numerous advancements in the field of neuro-oncology. The presence of the blood brain barrier (BBB) along with the highly invasive and aggressive nature of glioblastoma presents a difficult challenge for developing effective therapies. Temozolomide (TMZ) is a first line agent used in the clinic for glioblastoma and it has been useful in increasing patient survival rates. However, TMZ suffers from issues related to its pharmacokinetics, such as a short plasma half-life (2 h), is subjected to P-gp efflux, and has limited extravasation from blood to brain (∼20%). It has been postulated that reducing its efflux and increasing glioblastoma tissue exposure to TMZ could prove useful in treating glioblastoma and preventing tumour recurrence. Herein, ultra-small, large pore silica nanoparticles (USLP) have been loaded with TMZ, surface PEGlyated to reduce efflux and decorated with the cascade targeting protein lactoferrin for efficient uptake across the BBB and into glioblastoma. Our results demonstrate that USLP improves permeability of BBB in vitro as evidenced using a transwell model which mimics endothelial tight junctions with permeation being enhanced using PEGylated particles. Data from TMZ loaded USLP in vitro transwell BBB model also suggests that the USLP formulations can significantly reduce the efflux ratio of TMZ. In vitro apoptosis studies on glioblastoma cell lines U87 and GL261 were conducted which showed an improvement in TMZ induced glioblastoma apoptosis with USLP formulations compared to pure TMZ. Finally, a proof-of-concept preclinical mouse study demonstrated that when given intravenously at 50 mg/kg, USLP particles showed accumulation in the brain within a few hours without any obvious pathophysiological changes in vital organs as assessed via histology. Overall, the data suggests our innovative delivery system is efficient in extravasation from blood and permeating the BBB and has potential to improve efficacy of TMZ in glioblastoma therapy.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Nanopartículas , Camundongos , Animais , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Linhagem Celular Tumoral , Encéfalo/patologia , Nanopartículas/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Antineoplásicos Alquilantes
2.
Eur J Pharm Biopharm ; 158: 371-378, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33309846

RESUMO

The encapsulation of nanoparticles within microparticles designed for specific delivery to the colon is a relevant strategy to avoid premature degradation or release of nanoparticles during their passage through the stomach and upper gastrointestinal tract (GIT), allowing the targeted delivery of chemotherapeutics to the colon after oral administration. Here, we designed an oral multiparticulate system to achieve targeted release in the colon. In this sense, chitosan nanoparticles (CS NPs) encapsulated with 5-fluorouracil (5-FU) and incorporated into retrograded starch and pectin (RS/P) microparticles were developed and their in vivo distribution along the mouse GIT after oral administration was monitored using multispectral optical imaging. In vitro release studies revealed that the encapsulation of CS NPs into RS/P microparticles promoted greater control of 5-FU release rates, with a significant reduction (53%) in acid media that might replicate that found in the stomach following oral administration. The evaluation of the in vivo biodistribution of the CS NPs in mice showed a faster clearance in the distribution pattern along the mouse GIT, i.e., a shorter transit time of CS NPs compared to CS NPs-loaded RS/P microparticles. Additionally, CS NPs alone showed non-specific absorption into the blood-stream with associated kidney accumulation, while for the CS NPs-loaded RS/P microparticles no significant accumulation was observed in blood or major clearance organs. This suggests the specific degradability of RS/P by the colon microbiota appears to have been decisive in the higher protection of the CS NPs along the GIT until release in the colon, preventing unwanted absorption into the bloodstream and major organs following oral administration. Our findings represent a proof of concept for the use of RS/P microparticles as potential carriers for delivering drug-loaded nanoparticles to the colon and this work will contribute to the development of oral-systems for colorectal cancer therapy.


Assuntos
Antineoplásicos/farmacocinética , Neoplasias Colorretais/tratamento farmacológico , Portadores de Fármacos/química , Composição de Medicamentos/métodos , Nanopartículas/administração & dosagem , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Disponibilidade Biológica , Quitosana/administração & dosagem , Colo/metabolismo , Colo/microbiologia , Portadores de Fármacos/metabolismo , Liberação Controlada de Fármacos , Feminino , Fluoruracila/administração & dosagem , Fluoruracila/farmacocinética , Microbioma Gastrointestinal/fisiologia , Humanos , Absorção Intestinal , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Camundongos , Modelos Animais , Tamanho da Partícula , Pectinas/química , Pectinas/metabolismo , Estudo de Prova de Conceito , Amido/química , Amido/metabolismo , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA