Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Drug Discov Today ; 29(7): 104021, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38750928

RESUMO

The FDA has approved many nucleic acid (NA)-based products. The presence of charges and biological barriers however affect stability and restrict widespread use. The electrostatic complexation of peptide with polyethylene glycol-nucleic acids (PEG-NAs) via nonreducible and reducible agents lead to three parts at one platform.. The reducible linkage made detachment of siRNA from PEG easy compared with a nonreducible linkage. A peptide spider produces a small hydrodynamic particle size, which can improve drug release and pharmacokinetics. Several examples of peptide spiders that enhance stability, protection and transfection efficiency are discussed. Moreover, this review also covers the challenges, future perspectives and unmet needs of peptide-PEG-NAs conjugates for NAs delivery.


Assuntos
Ácidos Nucleicos , Peptídeos , Humanos , Peptídeos/química , Peptídeos/administração & dosagem , Ácidos Nucleicos/administração & dosagem , Animais , Polietilenoglicóis/química , Sistemas de Liberação de Medicamentos , Aranhas , RNA Interferente Pequeno/administração & dosagem
2.
Drug Discov Today ; 26(8): 1891-1903, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33610757

RESUMO

Cancer vaccines consist of nucleic acid derivatives such as plasmid DNA, small interfering RNA and mRNA, and can be customized according to the patient's needs. Nanomedicines have proven to be exceptionally good as miniaturized drug carriers, and thus they offer great advantages for delivering cancer vaccines. This review provides an overview of the literature on cancer vaccines, from their inception to current developments in the field.


Assuntos
Vacinas Anticâncer/administração & dosagem , Neoplasias/terapia , Vacinas Baseadas em Ácido Nucleico/administração & dosagem , Animais , DNA/administração & dosagem , Humanos , Lipídeos/química , Nanopartículas , Plasmídeos , Polímeros/química , RNA Mensageiro/administração & dosagem , RNA Interferente Pequeno/administração & dosagem
3.
Pharmaceutics ; 13(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374391

RESUMO

Early detection, right therapeutic intervention, and simultaneous effectiveness mapping are considered the critical factors in successful cancer therapy. Nevertheless, these factors experience the limitations of conventional cancer diagnostics and therapeutics delivery approaches. Along with providing the targeted therapeutics delivery, advances in nanomedicines have allowed the combination of therapy and diagnostics in a single system (called cancer theranostics). This paper discusses the progress in the pre-clinical and clinical development of therapeutics, diagnostics, and theranostics cancer nanomedicines. It has been well evident that compared to the overabundance of works that claimed success in pre-clinical studies, merely 15 and around 75 cancer nanomedicines are approved, and currently under clinical trials, respectively. Thus, we also brief the critical bottlenecks in the successful clinical translation of cancer nanomedicines.

4.
Expert Rev Vaccines ; 19(11): 1053-1071, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33315512

RESUMO

Introduction: Cancer immunotherapy is a fast-growing field that has achieved tremendous progress in recent years. It is one of the most potent tools that can activate the immune system against cancer. Nevertheless, the development of safe and effective vaccines to overcome emerging new disease remains challenging since several emerging antigens are poorly immunogenic. Nanotechnology has provided a realistic resolution for the drawback of traditional cancer immunotherapy. Area covered: This review discusses different cancer immunotherapy approaches focusing on recent advancements in nanomedicine-based cancer immunotherapy. The literature review method includes inclusion and exclusion criteria to categorize important articles. The literature survey was carried out using PubMed, Google Scholar, Scopus, and the Saudi digital library. Expert opinion: In the last two decades, the development and application of nanoparticles incorporating antigen/adjuvant in cancer immunotherapy have experienced rapid growth. Soon, progressively multifaceted nanovaccines presenting different antigens and co-delivered with antigens will be clinically translated. Better understanding and improved knowledge of nanomedicines-based delivery approaches and immunostimulatory action, and in-vivo biodistribution would inevitably facilitate the altruistic design of cancer nanovaccine for humankind.


Assuntos
Vacinas Anticâncer/administração & dosagem , Nanopartículas , Neoplasias/terapia , Adjuvantes Imunológicos/administração & dosagem , Animais , Antígenos/imunologia , Vacinas Anticâncer/imunologia , Humanos , Imunoterapia/métodos , Nanomedicina , Neoplasias/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia
5.
Eur J Pharm Biopharm ; 148: 10-26, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31923585

RESUMO

Rationally designed combination nano-therapy approaches have emerged as a promising strategy for resistant breast cancer treatment. This research reports the combination of Docetaxel (DTX) and Thymoquinone (THQ) co-encapsulated within long circulating sub-100 nm mPEG-DSPE-Vitamin E TPGS-Lipid nanocapsules (DxTq-LNCs). DxTq-LNCs with sufficient drug loading exhibited controlled drug release, enhanced protein binding resistance (confirming its long circulation in physiological environment and suitability for iv application) and retained the antioxidant effects of THQ. DxTq-LNCs were further subjected to cytotoxicity analysis against human breast cancer cells (MCF-7 & MDA-MB-231). The presence of multidrug resistance (MDR) reversal agents; Vitamin E TPGS and THQ, along with the nanoencapsulation, re-sensitized the resistant triple negative breast cancer (TNBC) cells to the anticancer effects of DTX. Greater inhibition of cell migration indicated improved anti-metastatic effects. Drastic changes in cellular morphology indicated by nuclear fragmentation (the hall marks of apoptosis), were observed upon DxTq-LNCs treatment to the breast cancer cells. In vivo toxicity studies indicated no substantial blood biochemical and histological changes with near normal appearance of kidney and liver tissue sections upon DxTq-LNCs treatment in contrast to free drug that showed parenchymal degeneration, areas of interstitial haemorrhage, glomerular atrophy and other histological changes, indicating hepato- and nephro-protective potential of DxTq-LNCs. Furthermore, enhanced antitumor efficacy was observed with DxTq-LNCs treatment to mice bearing ehrlich ascites carcinoma. Thus, nanocapsules presents a simple yet effective approach for successful combination chemotherapy with reduced unwanted toxicity.


Assuntos
Benzoquinonas/farmacologia , Neoplasias da Mama/tratamento farmacológico , Docetaxel/farmacocinética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Benzoquinonas/administração & dosagem , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Docetaxel/administração & dosagem , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Nanocápsulas , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Neoplasias de Mama Triplo Negativas/patologia , Vitamina E/química
6.
Colloids Surf B Biointerfaces ; 186: 110603, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31846892

RESUMO

In recent years, multi-targeted chemotherapeutic combinations have received considerable attention in solid tumor chemotherapy. Here, we optimized low-molecular-weight chitosan (CS)-grafted lipid nanocapsules (LNCs, referred to as CLNCs) for the co-delivery of docetaxel (DTX) and thymoquinone (THQ) to treat drug-resistant breast cancer. We first screened size reduction techniques (homogenization vs ultrasonication), and then the 33-Box-Behnken design was employed to determine optimal conditions of the final LNCs with the desired quality attributes. Uncoated LNCs had a particle size of 141.7 ± 2.8 nm (Polydispersity index, PdI: 0.17 ± 0.02) with entrapment efficiency (%EE) of 66.1 ± 3.5 % and 85.3 ± 3.1 % for DTX and THQ, respectively. The CS functionalization of LNCs improved the uptake and endosomal escape effect, and led to a significantly higher cytotoxicity against MCF-7 and triple-negative (MDA-MB-231) breast cancer cells. Furthermore, an enhanced antiangiogenic effect was observed with DTX- and THQ-carrying CLNCs in the Chick embryo chorioallantoic membrane (CAM) assay.


Assuntos
Antineoplásicos/farmacologia , Benzoquinonas/farmacologia , Neoplasias da Mama/tratamento farmacológico , Quitosana/química , Docetaxel/farmacologia , Lipídeos/química , Nanocápsulas/química , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Portadores de Fármacos/química , Composição de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Células MCF-7 , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Ratos , Relação Estrutura-Atividade
7.
Ther Deliv ; 11(1): 851-868, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31840567

RESUMO

Omega-3 polyunsaturated fatty acids (ω-3-PUFAs) are dietary components that have been extensively recognized for their therapeutic value and have shown diverse therapeutic effects including anti-inflammatory, antiarrhythmic, antithrombotic, immunomodulatory and antineoplastic activities. Most of the ω-3-PUFAs are obtained through diet or supplements because the body does not synthesize them. The high instability of ω-3-PUFAs to oxidative deterioration, lower bioavailability at the target tissues and reduced bioactivity of ω-3-PUFAs is an impediment for achieving their therapeutic potential. The present review provides an overview of potential therapeutic activities of ω-3-PUFAs and different novel technical approaches based on nanotechnology, which have been emphasized to overcome instability problems as well as enhance the bioactivity of ω-3-PUFAs. Future prospects related to this area of research are also provided.


Assuntos
Ácidos Graxos Ômega-3 , Nanopartículas , Dieta , Suplementos Nutricionais , Composição de Medicamentos , Estudos Prospectivos
8.
AAPS PharmSciTech ; 19(1): 134-147, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28631252

RESUMO

Carboxymethyl Assam Bora rice starch (CM-ABRS) was chemically synthesized in non-aqueous medium with the optimum degree of substitution (DS) of 1.23, and physicochemically characterized by FT-IR, DSC, XRD, and SEM analysis. Comparative evaluation of CM-ABRS with native starch (ABRS) for powder flow characteristics, swelling index, apparent solubility, rheological properties, textural properties, and mucoadhesive studies were carried out. The aim of the current work was to investigate the potential of CM-ABRS as a novel carrier for the water-soluble chemotherapeutic, doxorubicin hydrochloride (DOX). Formation of drug/polymer complex (DOX-CM-ABRS) via electrostatic interaction has been evaluated for the controlled release of DOX in three different pH media (phosphate-buffered saline (PBS), pH 7.4, 6.8, and 5.5). In vitro drug release studies illustrated faster release of drug in PBS at pH 5.5 as compared to pH 6.8 and pH 7.4, respectively, indicating the importance of pH-sensitive drug release from the DOX-CM-ABRS complex in malignant tissues.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Preparações de Ação Retardada , Portadores de Fármacos/síntese química , Liberação Controlada de Fármacos , Concentração de Íons de Hidrogênio , Oryza , Solubilidade , Amido/química , Eletricidade Estática
9.
Curr Pharm Des ; 23(11): 1575-1588, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28120725

RESUMO

With the advent of novel vesicular drug delivery systems especially bilosomes, for large molecular weight proteins and peptides, their oral administration seems a viable approach. These nano-vesicles have shown promising results for the effective delivery of insulin and other therapeutics, perhaps due to their structural composition. The present review has elaborated the biopharmaceutical challenges for the oral delivery of therapeutic proteins and peptides as well as presented a novel approach to deliver the essential macromolecules through oral route as bilosomes. The extensive search has been presented related to the formulation, evaluation and in vivo performance of bilosomes. Some of the crucial findings related to bilosomes have corroborated them superior to other colloidal carriers. The successful drug delivery through bilosomes requires significant justifications related to their interaction with the biological membranes. The other aspects such as absolute absorption, safety and toxicity of bilosome drug delivery should also be equally considered.


Assuntos
Ácidos e Sais Biliares/química , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Nanotecnologia , Peptídeos/administração & dosagem , Proteínas/administração & dosagem , Administração Oral , Ácidos e Sais Biliares/síntese química , Humanos , Peptídeos/química , Proteínas/química
10.
J Pharm Pharmacol ; 69(1): 1-14, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27774648

RESUMO

OBJECTIVES: The present review explores the therapeutic application of herbals in rheumatoid arthritis (RA) therapy, and how nano/submicromedicine can be fit in the scope of its therapeutic delivery in RA has been addressed. KEY FINDINGS: Incorporation of bioactive such as polyphenols, thymoquinone, resveratrol, hesperidin, curcumin, celastrol and gambogic acid in a dose-dependent manner showed quite high efficacy for the treatment of RA. It can be attributed to their targeting ability against various inflammatory mediators including nitric oxide (NO), cytokines, chemokines, adhesion molecules, NF-kß, lipoxygenase (LOXs) and arachidonic acid (AA). Despite the presence of significant merits, the use of these bioactives has several demerits such as poor bioavailability as a function of low aqueous solubility and higher first-pass metabolism upon oral administration. The impact of nano/submicromedicine in the delivery of these bioactives against RA has gained wider attention owing to bioavailability enhancement, higher stability and better efficacy. CONCLUSION: Phytoconstituents possess immense potential in RA pharmacotherapy, but the obstacles for their effective delivery can be overcome using nano/submicrocarrier-based drug delivery technologies, which maximize the efficacy of these herbal antirheumatic drugs without any systemic adverse effects.


Assuntos
Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Magnoliopsida/química , Compostos Fitoquímicos/uso terapêutico , Fitoterapia , Extratos Vegetais/uso terapêutico , Antirreumáticos/administração & dosagem , Antirreumáticos/farmacocinética , Antirreumáticos/farmacologia , Disponibilidade Biológica , Humanos , Nanopartículas , Compostos Fitoquímicos/administração & dosagem , Compostos Fitoquímicos/farmacocinética , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacocinética , Extratos Vegetais/farmacologia
11.
Pharmacol Res ; 113(Pt A): 146-165, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27546165

RESUMO

Cancer chemotherapeutic drug containing PEGylated lipidic nanocapsules (D-LNCs) were formulated by the controlled addition of organic phase (combined solution of paclitaxel and curcumin in a mixture of oleic acid and MPEG2000-DSPE (90:2.5 molar ratio) in acetone) to the aqueous phase (consist of Poloxamer 407 as emulsifying agents and glycerol as a co-solvent) at a temperature of 55-60°C followed by evaporation of organic solvent. The obtained pre-colloidal dispersion of D-LNCs was processed through high pressure homogenization to get more uniformly and nano-sized particles. Effect of concentration of emulsifying agent and process variables of high pressure homogenization (pressure and number of cycles) on average particle size and entrapment efficiency was further investigated by constructing Box-Behnken experimental design to achieve the optimum manufacturing process. D-LNCs were characterized by dynamic light scattering, scanning and transmission electron microscopy, Fourier transform infrared spectroscopy, and differential scanning calorimetry. In vitro release studies showed a sustained release pattern of drug from the PEGylated D-LNCs, whereas in vivo pharmacokinetic studies after a single-dose intravenous (i.v.) administration of paclitaxel (15mg/kg) in Ehrlich ascites tumor (EAT)-bearing female Swiss albino mice showed a prolonged circulation time and slower elimination of paclitaxel from D-LNCs as compared with marketed formulation (Paclitec®). From the plasma concentration vs. time profile, i.v. bioavailability (AUC0-∞) of paclitaxel from D-LNCs was found to be increased approximately 2.91-fold (P<0.001) as compared to Paclitec®. In vitro cell viability assay against MCF-7 and MCF-7/ADR cell lines, in vivo biodistribution studies and tumor inhibition study in EAT-bearing mice, all together prove its significantly improved potency towards cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Curcumina/farmacologia , Lipídeos/química , Nanocápsulas/química , Paclitaxel/farmacologia , Poloxâmero/farmacologia , Polietilenoglicóis/química , Animais , Antineoplásicos/química , Disponibilidade Biológica , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Química Farmacêutica/métodos , Curcumina/química , Emulsificantes/química , Feminino , Humanos , Células MCF-7 , Camundongos , Paclitaxel/química , Tamanho da Partícula , Poloxâmero/química
12.
Mol Pharm ; 13(9): 3153-63, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27486998

RESUMO

Intracellular availability of nucleic acids from synthetic vectors is critical and directly influences the transfection efficiency (TE). Herein, we evaluated the TE of polymer- and lipid-based nanoplexes (polyplexes, lipoplexes and lipopolyplexes) of EGFP-encoding mRNA and pDNA. To determine the translation and transcription efficiency of each nucleic acid nanoplex, in vitro expression was measured in HEK293T7 cells that permit gene expression in the cytoplasmic region. Globally, mRNA transfection profile was well corroborative with cytoplasmic transfection of pT7-pDNA as well as with nuclear transfection of pCMV-DNA. Irrespective of the nucleic acid, high TE was observed with histidinylated l-polyethylenimine (His-lPEI) polyplexes and dioleyl succinyl paromomycin/O,O-dioleyl-N-histamine phosphoramidate (DOPS/MM27) lipoplexes. Moreover, His-lPEI polyplexes yielded higher in vitro expression of EGFP for pDNA than for mRNA. Furthermore, a significant enhancement in the TE in the presence of an excess of His-lPEI was observed indicating that this polymer promotes cytosolic delivery. Compared to other nanoplexes, His-lPEI polyplex showed high intracellular availability of DNA and mRNA along with low cytotoxicity, owing to its rapid (complete or partial) unpacking in the cytosol and/or endosomes. This study gives an insight that, whether with mRNA or pDNA, enhancing nanoplex unpacking in the endosomes and cytosol would improve the delivery of nucleic acid in the cytosol and particularly in the case of pDNA where a sufficient available amount of pDNA in the cytoplasm would definitely improve its transport toward the nucleus.


Assuntos
DNA/metabolismo , Plasmídeos/química , RNA Mensageiro/metabolismo , Transfecção/métodos , Linhagem Celular , Citoplasma/metabolismo , DNA/genética , Endossomos/metabolismo , Técnicas de Transferência de Genes , Humanos , Lipídeos/química , Tamanho da Partícula , Polietilenoimina/química , Polímeros/química
13.
Curr Pharm Des ; 22(28): 4360-4373, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27319945

RESUMO

Cancer is a highly heterogeneous disease at intra/inter patient levels and known as the leading cause of death worldwide. A variety of mono and combinational therapies including chemotherapy have been evolved over the years for its effective treatment. However, advent of chemotherapeutic resistance or multidrug resistance (MDR) in cancer is a major challenge researchers are facing in cancer chemotherapy. MDR is a complex process having multifaceted non-cellular or cellular-based mechanisms. Research in the area of cancer nanotechnology over the past two decade has now proven that the smartly designed nanoparticles help in successful chemotherapy by overcoming the MDR and preferentially accumulate in the tumor region by means of active and passive targeting therefore reducing the offtarget accumulation of payload. Many of such nanoparticles are in different stages of clinical trials as nanomedicines showing promising result in cancer therapy including the resistant cases. Nanoparticles as chemotherapeutics carriers offer the opportunity to have multiple payload of drug and or imaging agents for combinational and theranostics therapy. Moreover, nanotechnology further bring in notice the new treatment strategies such as combining the NIR, MRI and HIFU in cancer chemotherapy and imaging. Here, we discussed the cellular/non-cellular factors constituting the MDR in cancer and the role of nanomedicines in effective chemotherapy of MDR cases of cancers. Moreover, recent advancements like combinational payload delivery and combined physical approach with nanotechnology in cancer therapy have also been discussed.


Assuntos
Engenharia Biomédica , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Nanopartículas , Neoplasias/tratamento farmacológico , Humanos
14.
J Drug Target ; 24(4): 273-93, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26066739

RESUMO

Comprehensive pharmacological screening of curcumin (CUR) has given the evidence that it is an excellent naturally occurring therapeutic moiety for cancer. It is very well tolerated with insignificant toxicity even after high doses of oral administration. Irrespective of its better quality as an anticancer agent, therapeutic application of CUR is hampered by its extremely low-aqueous solubility and poor bioavailability, rapid clearance and low-cellular uptake. A simple means of breaking up the restrictive factor of CUR is to perk-up its aqueous solubility, improve its bioavailability, protect it from degradation, and metabolism and potentiate its targeting capacity towards the cancer cell. The development in the field of nanomedicine has made excellent progresses toward enhancing the bioavailability of lipophilic drugs like CUR. Nanoparticles (NPs) are capable to deliver the CUR at specific area and thereby prevent it from physiological degradation and systemic clearance. In recent year, an assortment of nanomedicine-based novel drug delivery system has been designed to potentiate the bioavailability of CUR towards anticancer therapy. In this review, we discuss the recent development in the field of nanoCUR (NanoCur), including polymeric micelles, liposome, polymeric NPs, nanoemulsion, nanosuspension, solid lipid NPs (SLNPs), polymer conjugates, nanogel, etc. in anticancer application.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Curcumina/administração & dosagem , Portadores de Fármacos/química , Desenho de Fármacos , Nanoestruturas/química , Nanotecnologia/métodos , Animais , Antineoplásicos Fitogênicos/farmacocinética , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Linhagem Celular Tumoral , Curcumina/farmacocinética , Curcumina/farmacologia , Curcumina/uso terapêutico , Humanos , Nanotecnologia/tendências
15.
Nanotechnol Sci Appl ; 8: 55-66, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26640374

RESUMO

Considering the challenges associated with conventional chemotherapy, targeted and local delivery of chemotherapeutics via nanoparticle (NP) carriers to the lungs is an emerging area of interest. Recent studies and growing clinical application in cancer nanotechnology showed the huge potential of NPs as drug carriers in cancer therapy, including in lung carcinoma for diagnosis, imaging, and theranostics. Researchers have confirmed that nanotechnology-based inhalation chemotherapy is viable and more effective than conventional chemotherapy, with lesser side effects. Recently, many nanocarriers have been investigated, including liposomes, polymeric micelles, polymeric NPs, solid lipid NPs, and inorganic NPs for inhalation treatments of lung cancer. Yet, the toxicity of such nanomaterials to the lungs tissues and further distribution to other organs due to systemic absorption on inhalation delivery is a debatable concern. Here, prospect of NPs-based local lung cancer targeting through inhalation route as well as its associated challenges are discussed.

16.
Curr Drug Metab ; 16(8): 633-44, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26264206

RESUMO

Chemotherapeutic delivery by oral route in cancer patients has the potential to create "hospitalization free chemotherapy" which is a vision of oncologists, formulation scientists and patients. Such a therapeutic approach will improve patients' compliance, ease the burden of the patients' caregivers and significantly reduce the cost of treatment. In current clinical practice, chemotherapy carried out by intravenous injection or infusion leads to undesired side-effects such as plasma concentrations crossing the maximum safe concentration, rapid body clearance and lower bioavailability. Despite the presence of challenges such as poor aqueous solubility and stability of drugs and the presence of biological barriers like multidrug efflux transporter in the GI tract, oral cancer chemotherapy has the potential to surmount those obstacles. Lipid nanoparticles (LNPs) such as solid lipid nanoparticle, nanostructured lipid carriers, nano lipid-drug conjugates, mixed micelles, liposomes and nanoemulsions have shown some promising results for use in oral anticancer drug delivery through nanotechnological approach. LNPs demonstrate enhanced oral bioavailability owing to their ability to inhibit first pass metabolism via lymphatic absorption by chylomicron-linked and/or M-cell uptake. LNPs reduce the inter- and intrasubject pharmacokinetics variability of administrated drugs. Moreover, certain classes of phospholipids and surfactants used in the formulations of LNPs can suppress the P-glycoprotein efflux system. Here, we shall be discussing the biopharmaceutical challenges in oral cancer chemotherapy and how the LNPs may provide solutions to such challenges. The effect of GI tract environment on LNPs and pharmacokinetics shall also be discussed.


Assuntos
Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Administração Oral , Animais , Antineoplásicos/química , Humanos , Lipídeos/química , Nanopartículas/química , Neoplasias/metabolismo
17.
Nanomedicine (Lond) ; 10(15): 2405-22, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26252175

RESUMO

As an inorganic nanomaterial, graphene nanocomposites have gained much attention in cancer nanotechnology compared with the other inorganic nanomaterial in recent times. Although a relatively new drug carrier, it has been extensively explored as a potential chemotherapeutic carrier and theranostic because of its numerous physicochemical properties, including, capability of multiple pay load, functionalization for drug targeting and photothermal effect. Despite potential benefit, its translation from bench to bed-side in cancer therapy is challenged due to its toxicity concern. Here, we discussed the present progress and future possibilities of graphene nanocomposites as a cancer theranostic. Moreover, the paper also exemplifies the effects of graphene/graphene oxide on tissues and organ functions in order to understand the extent and mechanism of toxicity.


Assuntos
Grafite/química , Nanocompostos , Nanomedicina , Neoplasias/terapia , Nanomedicina Teranóstica , Humanos , Neoplasias/diagnóstico
18.
Curr Drug Metab ; 16(5): 397-409, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25429670

RESUMO

Graphene and its modified nano-composites have gained much attention in recent times in cancer therapy as nanotheranostics due to low production cost, ease in synthesis and physicochemical properties (ultra-large surface area with planar structure and π-π conjugation with the unsaturated and aromatic drugs/biomolecules) being favorable for multiple payloads and drug targeting. Yet, graphene nano-composites are a relatively new and rapid development. The adoption of graphene nano-composites in cancer nanobiomedicine research raises questions about in vivo metabolism and disposition as well as biological interaction and safety profile of these nano-particles. Limited in-vitro and in-vivo findings are available in literature, indicating the inconsistencies about the factors affecting in-vivo bio-interaction and toxicity. Presently, there is a lack of anticipated biodistribution and toxicity pattern of graphene. It appears that surface functionalization, biocompatible coating, and size are the key factors in determining the metabolic fate of graphene nano-composites. In-vitro and in-vivo toxicity data suggests that graphene nano-composites exhibit dose and size dependent toxicity. This review summarizes up-to-date research outcome of this promising inorganic nanomaterial for cancer therapy. Moreover, the metabolic fate and toxicity issues of graphene and its nano-composites shall also be discussed in detail.


Assuntos
Antineoplásicos/administração & dosagem , Grafite/química , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Sistemas de Liberação de Medicamentos , Grafite/efeitos adversos , Humanos , Nanocompostos , Tamanho da Partícula , Nanomedicina Teranóstica/métodos , Distribuição Tecidual
19.
Int J Pharm ; 468(1-2): 158-64, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24746694

RESUMO

Nano-sized curcumin-loaded super-paramagnetic iron oxide nanoparticles (CUR-OA-SPIONs) were synthesized chemically by co-precipitation method using oleic acid as a stabilizer and Myrj 52 as a surfactant. The synthesized nanoparticles were characterized for their shape, size, surface morphology, electrokinetic potential, magnetic properties, crystalinity, chemical interactions and thermal transitions. The synthesized CUR-OA-SPIONs were spherical, mono-dispersed, physically stable and super-paramagnetic in nature. In vitro localization study and aggregation dynamics of CUR-OA-SPIONs were studied with a flow of blood inside a square glass capillary (500×500 µm(2) cross section) in the presence of an externally applied magnetic field (Ms=1200 mT). This research which is first of its kind showed the fluorescent imaging of CUR-OA-SPIONs with respect to time to understand the aggregation dynamics of magnetic nanoparticles in a micro capillary simulating the case of targeted drug delivery system. The size of the aggregation increases with respect to time (t=0(+)s to t=500 s), while no significant change in the size of the aggregate was observed after time t=500 s.


Assuntos
Antineoplásicos Fitogênicos/síntese química , Curcumina/síntese química , Portadores de Fármacos , Magnetismo , Nanopartículas de Magnetita/química , Tecnologia Farmacêutica/métodos , Precipitação Química , Química Farmacêutica , Curcumina/análogos & derivados , Estabilidade de Medicamentos , Excipientes/química , Magnetismo/instrumentação , Microscopia de Fluorescência , Nanotecnologia , Ácido Oleico/química , Tamanho da Partícula , Polietilenoglicóis/química , Propriedades de Superfície , Tensoativos/química , Tecnologia Farmacêutica/instrumentação , Fatores de Tempo
20.
J Pharm Pharmacol ; 65(5): 634-51, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23600380

RESUMO

OBJECTIVES: This review elaborate on modified gold nanoparticulate concept in oncology, provides an overview of the use of gold nanoparticles in cancer treatment and discusses their potential applications and clinical benefits. KEY FINDINGS: Modified gold nanoparticles (e.g. rod, multipod and star or a hollow structure such as shell, box and cage) have promising applications in the fields of drug delivery and photothermal therapy in oncology due to their unique optical and photothermal properties and their ability to modify the surface and conjugate drugs/molecules with gold nanomaterial. Modified gold nanoparticles exhibit strong light absorption in the near-infrared region in which light can penetrate deeply into soft tissue. Moreover, recent advances have opened the way to site-specific delivery by gold nanoparticle. SUMMARY: Recent research and development in cancer-targeted gold nanovectors shows promise for maximizing the efficacy of anti-cancer drugs while decreasing their harmful systemic effects in chemotherapy. Moreover, gold nanoparticles can also serve as cancer therapeutic.


Assuntos
Antineoplásicos , Sistemas de Liberação de Medicamentos , Ouro , Nanopartículas , Nanotecnologia , Neoplasias/tratamento farmacológico , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Ouro/química , Ouro/uso terapêutico , Temperatura Alta , Humanos , Luz , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA