Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; 83: 101915, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492844

RESUMO

OBJECTIVE: The glucose-dependent insulinotropic polypeptide (GIP) decreases body weight via central GIP receptor (GIPR) signaling, but the underlying mechanisms remain largely unknown. Here, we assessed whether GIP regulates body weight and glucose control via GIPR signaling in cells that express the leptin receptor (Lepr). METHODS: Hypothalamic, hindbrain, and pancreatic co-expression of Gipr and Lepr was assessed using single cell RNAseq analysis. Mice with deletion of Gipr in Lepr cells were generated and metabolically characterized for alterations in diet-induced obesity (DIO), glucose control and leptin sensitivity. Long-acting single- and dual-agonists at GIPR and GLP-1R were further used to assess drug effects on energy and glucose metabolism in DIO wildtype (WT) and Lepr-Gipr knock-out (KO) mice. RESULTS: Gipr and Lepr show strong co-expression in the pancreas, but not in the hypothalamus and hindbrain. DIO Lepr-Gipr KO mice are indistinguishable from WT controls related to body weight, food intake and diet-induced leptin resistance. Acyl-GIP and the GIPR:GLP-1R co-agonist MAR709 remain fully efficacious to decrease body weight and food intake in DIO Lepr-Gipr KO mice. Consistent with the demonstration that Gipr and Lepr highly co-localize in the endocrine pancreas, including the ß-cells, we find the superior glycemic effect of GIPR:GLP-1R co-agonism over single GLP-1R agonism to vanish in Lepr-Gipr KO mice. CONCLUSIONS: GIPR signaling in cells/neurons that express the leptin receptor is not implicated in the control of body weight or food intake, but is of crucial importance for the superior glycemic effects of GIPR:GLP-1R co-agonism relative to single GLP-1R agonism.


Assuntos
Peso Corporal , Ingestão de Alimentos , Polipeptídeo Inibidor Gástrico , Camundongos Knockout , Obesidade , Receptores dos Hormônios Gastrointestinais , Receptores para Leptina , Animais , Masculino , Camundongos , Polipeptídeo Inibidor Gástrico/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Glucose/metabolismo , Leptina/metabolismo , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Receptores dos Hormônios Gastrointestinais/metabolismo , Receptores dos Hormônios Gastrointestinais/genética , Receptores para Leptina/metabolismo , Receptores para Leptina/genética , Transdução de Sinais
2.
Nat Metab ; 5(12): 2075-2085, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37946085

RESUMO

The development of single-molecule co-agonists for the glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) and glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) is considered a breakthrough in the treatment of obesity and type 2 diabetes. But although GIPR-GLP-1R co-agonism decreases body weight with superior efficacy relative to GLP-1R agonism alone in preclinical1-3 and clinical studies4,5, the role of GIP in regulating energy metabolism remains enigmatic. Increasing evidence suggests that long-acting GIPR agonists act in the brain to decrease body weight through the inhibition of food intake3,6-8; however, the mechanisms and neuronal populations through which GIP affects metabolism remain to be identified. Here, we report that long-acting GIPR agonists and GIPR-GLP-1R co-agonists decrease body weight and food intake via inhibitory GABAergic neurons. We show that acyl-GIP decreases body weight and food intake in male diet-induced obese wild-type mice, but not in mice with deletion of Gipr in Vgat(also known as Slc32a1)-expressing GABAergic neurons (Vgat-Gipr knockout). Whereas the GIPR-GLP-1R co-agonist MAR709 leads, in male diet-induced obese wild-type mice, to greater weight loss and further inhibition of food intake relative to a pharmacokinetically matched acyl-GLP-1 control, this superiority over GLP-1 vanishes in Vgat-Gipr knockout mice. Our data demonstrate that long-acting GIPR agonists crucially depend on GIPR signaling in inhibitory GABAergic neurons to decrease body weight and food intake.


Assuntos
Diabetes Mellitus Tipo 2 , Masculino , Camundongos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Obesidade/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptores Acoplados a Proteínas G , Glucose , Neurônios GABAérgicos/metabolismo , Ingestão de Alimentos
3.
Front Endocrinol (Lausanne) ; 13: 838410, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35299971

RESUMO

The incretin hormone glucagon-like peptide-1 (GLP-1) has received enormous attention during the past three decades as a therapeutic target for the treatment of obesity and type 2 diabetes. Continuous improvement of the pharmacokinetic profile of GLP-1R agonists, starting from native hormone with a half-life of ~2-3 min to the development of twice daily, daily and even once-weekly drugs highlight the pharmaceutical evolution of GLP-1-based medicines. In contrast to GLP-1, the incretin hormone glucose-dependent insulinotropic polypeptide (GIP) received little attention as a pharmacological target, because of conflicting observations that argue activation or inhibition of the GIP receptor (GIPR) provides beneficial effects on systemic metabolism. Interest in GIPR agonism for the treatment of obesity and diabetes was recently propelled by the clinical success of unimolecular dual-agonists targeting the receptors for GIP and GLP-1, with reported significantly improved body weight and glucose control in patients with obesity and type II diabetes. Here we review the biology and pharmacology of GLP-1 and GIP and discuss recent advances in incretin-based pharmacotherapies.


Assuntos
Diabetes Mellitus Tipo 2 , Incretinas , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Polipeptídeo Inibidor Gástrico , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Humanos , Incretinas/uso terapêutico , Obesidade/tratamento farmacológico , Obesidade/metabolismo
4.
Nutrients ; 10(12)2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30545041

RESUMO

Myricetin is a biologically active natural polyphenol with beneficial effects on metabolic health. This study aimed to examine the effects of myricetin on the expression levels of genes involved in lipolysis and mitochondrial respiration in adipocytes and the anti-obesity potential of myricetin. The results indicated that myricetin reduced triglyceride (TG) content and increased mitochondrial content and oxygen consumption rate (OCR) in adipocytes in vitro. To determine anti-obesity effect of myricetin, C57BL6/J mice were fed a high-fat diet (HFD) for eight weeks and then treated with myricetin (10 mg/kg) for 2 weeks. The in vivo treatment of myricetin reduced body weight by 11%. Furthermore, it improved the glucose tolerance, and increased fatty acid consumption of HFD-fed mice. Myricetin treatment increased Sirt3 expression and reduced the acetylation of mitochondrial proteins in adipose tissue. Finally, the knockdown of Sirt3 in adipocytes reduced the myricetin-induced increase in mitochondrial oxygen consumption rate by about 27% compared to controls. Our results indicated that myricetin exerted anti-obesity effects through the upregulation of Sirt3 expression and mitochondrial metabolism in adipose tissue.


Assuntos
Fármacos Antiobesidade/farmacologia , Flavonoides/farmacologia , Sirtuína 3/metabolismo , Regulação para Cima/efeitos dos fármacos , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Glicemia/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Linhagem Celular , Dieta Hiperlipídica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Sirtuína 3/análise , Sirtuína 3/genética
5.
Sci Rep ; 8(1): 8856, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29891910

RESUMO

15-lipoxygenase is involved in the generation of specialized pro-resolving lipid mediators that play essential roles in resolution and inflammatory responses. Here, we investigated anti-inflammatory role of Alox15 in skin homeostasis. We demonstrated that knockout (KO) of Alox15 led to hair loss and disrupted the structural integrity of the dorsal skin. Alox15 KO resulted in loss of hair follicle stem cells and abnormal transition of dermal adipocytes into fibroblasts. Alox15 deficiency increased infiltration of proinflammatory macrophages and upregulated proinflammatory and necroptotic signaling in dermal adipose tissue in the dorsal skin. Lipidomic analysis revealed severe loss of resolvin D2 in the dorsal skin of Alox15 KO mice compared to wild type controls. Treatment with resolvin D2 reduced skin inflammation in Alox15 KO mice. Collectively, these results indicate that Alox15-mediated production of resolvin D2 is required to maintain skin integrity by suppressing dermal inflammation.


Assuntos
Araquidonato 12-Lipoxigenase/fisiologia , Araquidonato 15-Lipoxigenase/fisiologia , Ácidos Docosa-Hexaenoicos/metabolismo , Inflamação , Pele/metabolismo , Adipócitos/citologia , Adipócitos/metabolismo , Alopecia , Animais , Araquidonato 12-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/genética , Morte Celular , Fibroblastos/citologia , Técnicas de Inativação de Genes , Folículo Piloso/patologia , Homeostase , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA