Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Neurooncol Adv ; 6(1): vdad163, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38213835

RESUMO

Retinoblastoma is an ocular cancer associated with genomic variation in the RB1 gene. In individuals with bilateral retinoblastoma, a germline variant in RB1 is identified in virtually all cases. We describe herein an individual with bilateral retinoblastoma for whom multiple clinical lab assays performed by outside commercial laboratories failed to identify a germline RB1 variant. Paired tumor/normal exome sequencing, long-read whole genome sequencing, and long-read isoform sequencing was performed on a translational research basis ultimately identified a germline likely de novo Long Interspersed Nuclear Element (LINE)-1 mediated deletion resulting in a premature stop of translation of RB1 as the underlying genetic cause of retinoblastoma in this individual. Based on these research findings, the LINE-1 mediated deletion was confirmed via Sanger sequencing in our clinical laboratory, and results were reported in the patient's medical record to allow for appropriate genetic counseling.

2.
Genes Chromosomes Cancer ; 61(12): 710-719, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35771717

RESUMO

Acute lymphoblastic leukemia (B-ALL) with intrachromosomal amplification of chromosome 21 (iAMP21-ALL) represents a recurrent high-risk cytogenetic abnormality and accurate identification is critical for appropriate clinical management. Identification of iAMP21-ALL has historically relied on fluorescence in situ hybridization (FISH) using a RUNX1 probe. Current classification requires ≥ five copies of RUNX1 per cell and ≥ three additional copies of RUNX1 on a single abnormal iAMP21-chromosome. We sought to evaluate the performance of the RUNX1 probe in the identification of iAMP21-ALL. This study was a retrospective evaluation of iAMP21-ALL in the Mayo Clinic and Children's Oncology Group cohorts. Of 207 cases of iAMP21-ALL, 188 (91%) were classified as "typical" iAMP21-ALL, while 19 (9%) cases were classified as "unusual" iAMP21-ALL. The "unusual" iAMP21 cases did not meet the current definition of iAMP21 by FISH but were confirmed to have iAMP21 by chromosomal microarray. Half of the "unusual" iAMP21-ALL cases had less than five RUNX1 signals, while the remainder had ≥ five RUNX1 signals with some located apart from the abnormal iAMP21-chromosome. Nine percent of iAMP21-ALL cases fail to meet the FISH definition of iAMP21-ALL demonstrating that laboratories are at risk of misidentification of iAMP21-ALL when relying only on the RUNX1 FISH probe. Incorporation of chromosomal microarray testing circumvents these risks.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Leucemia-Linfoma Linfoblástico de Células Precursoras , Aberrações Cromossômicas , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Humanos , Hibridização in Situ Fluorescente , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Estudos Retrospectivos
4.
Blood ; 139(15): 2273-2284, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35167654

RESUMO

Cytogenetics has long represented a critical component in the clinical evaluation of hematologic malignancies. Chromosome banding studies provide a simultaneous snapshot of genome-wide copy number and structural variation, which have been shown to drive tumorigenesis, define diseases, and guide treatment. Technological innovations in sequencing have ushered in our present-day clinical genomics era. With recent publications highlighting novel sequencing technologies as alternatives to conventional cytogenetic approaches, we, an international consortium of laboratory geneticists, pathologists, and oncologists, describe herein the advantages and limitations of both conventional chromosome banding and novel sequencing technologies and share our considerations on crucial next steps to implement these novel technologies in the global clinical setting for a more accurate cytogenetic evaluation, which may provide improved diagnosis and treatment management. Considering the clinical, logistic, technical, and financial implications, we provide points to consider for the global evolution of cytogenetic testing.


Assuntos
Neoplasias Hematológicas , Aberrações Cromossômicas , Análise Citogenética , Citogenética , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/genética , Humanos
5.
Cancer Genet ; 243: 52-72, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32302940

RESUMO

Clinical management and risk stratification of B-lymphoblastic leukemia/ lymphoma (B-ALL/LBL) depend largely on identification of chromosomal abnormalities obtained using conventional cytogenetics and Fluorescence In Situ Hybridization (FISH) testing. In the last few decades, testing algorithms have been implemented to support an optimal risk-oriented therapy, leading to a large improvement in overall survival. In addition, large scale genomic studies have identified multiple aberrations of prognostic significance that are not routinely tested by existing modalities. However, as chromosomal microarray analysis (CMA) and next-generation sequencing (NGS) technologies are increasingly used in clinical management of hematologic malignancies, these abnormalities may be more readily detected. In this article, we have compiled a comprehensive, evidence-based review of the current B-ALL literature, focusing on known and published subtypes described to date. More specifically, we describe the role of various testing modalities in the diagnosis, prognosis, and therapeutic relevance. In addition, we propose a testing algorithm aimed at assisting laboratories in the most effective detection of the underlying genomic abnormalities.


Assuntos
Aberrações Cromossômicas , Genômica/normas , Oncologia/normas , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Adulto , Fatores Etários , Criança , Tomada de Decisão Clínica , Análise Citogenética , Intervalo Livre de Doença , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hibridização in Situ Fluorescente , Análise de Sequência com Séries de Oligonucleotídeos , Seleção de Pacientes , Guias de Prática Clínica como Assunto , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidade , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Prognóstico , Medição de Risco/métodos , Medição de Risco/normas
6.
DNA Repair (Amst) ; 3(5): 535-42, 2004 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-15084315

RESUMO

Fanconi anemia (FA) and cells lacking functional BRCA1 and BRCA2 proteins are hypersensitive to interstrand crosslinking (ICL) agents and show increased numbers of chromosomal breaks and radials. Although radial formation has been used to diagnose FA for more than 30 years, there has been little analysis of these characteristic formations. In this study, radials were analyzed from FA-A and FA-G fibroblasts as well as normal and retrovirally-corrected FA-A fibroblasts treated with high doses of ICLs. Radials were found to only involve non-homologous chromosome interactions and to be distributed nearly randomly along the length of chromosomes. Sites on chromosomes that did show increased frequency of radial involvement did not correlate with known fragile sites or pericentric regions. Hybrid radials were observed between mouse and human chromosomes in human-mouse hybrid cells produced by microcell-mediated chromosome transfer of mouse chromosomes into human FA-A fibroblasts. Both X and Y chromosomes were notably not involved in radials. These observations suggest that ICL repair may involve short stretches of homology, resulting in aberrant radial formation in the absence of FA proteins.


Assuntos
Aberrações Cromossômicas/induzido quimicamente , Cromossomos de Mamíferos/efeitos dos fármacos , Reagentes de Ligações Cruzadas/farmacologia , Anemia de Fanconi/genética , Cromossomos Sexuais/efeitos dos fármacos , Animais , Células Cultivadas , Cromossomos de Mamíferos/genética , Feminino , Humanos , Células Híbridas/metabolismo , Hibridização in Situ Fluorescente , Cariotipagem , Masculino , Camundongos , Homologia de Sequência do Ácido Nucleico , Cromossomos Sexuais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA