Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biochem Mol Toxicol ; 38(1): e23591, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38037273

RESUMO

Histone deacetylases (HDACs) have been identified as promising targets for anticancer treatment. The study demonstrates virtual screening, molecular docking, and synthesis of 4-(2-aminoethyl) phenol derivatives as HDAC inhibitors. The virtual screening and molecular docking analysis led to the identification of 10 representative compounds, which were evaluated based on their drug-like properties. The results demonstrated that these compounds effectively interacted with the active site pocket of HDAC 3 through π-stacking, Zn2+ coordination, hydrogen bonding, and hydrophobic interactions with catalytic residues. Furthermore, a series of 4-(2-aminoethyl) phenol derivatives were synthesized, and their HDAC inhibitory activity was evaluated. Compounds 18 and 20 showed significant HDAC inhibitory activity of 64.94 ± 1.17% and 52.45 ± 1.45%, respectively, compared to the solvent control. The promising results of this study encourage further research on 4-(2-aminoethyl) phenol derivatives and may provide significant insight into the design of novel small molecule HDAC inhibitors to fight against target-specific malignancies of chronic obstructive pulmonary disease and nonsmall cell lung cancer in the future.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Linhagem Celular Tumoral , Simulação de Acoplamento Molecular , Fenol/farmacologia , Histona Desacetilases/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Desenho de Fármacos , Antineoplásicos/química , Proliferação de Células , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA