Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 857(Pt 2): 159318, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36220465

RESUMO

Plastic food packaging represents 40 % of the plastic production worldwide and belongs to the 10 most commonly found items in aquatic environments. They are characterized by high additives contents with >4000 formulations available on the market. Thus they can release their constitutive chemicals (i.e. additives) into the surrounding environment, contributing to chemical pollution in aquatic systems and to contamination of marine organism up to the point of questioning the health of the consumer. In this context, the chemical and toxicological profiles of two types of polypropylene (PP) and polylactic acid (PLA) food packaging were investigated, using in vitro bioassays and target gas chromatography mass spectrometry analyses. Plastic additives quantification was performed both on the raw materials, and on the material leachates after 5 days of lixiviation in filtered natural seawater. The results showed that all samples (raw materials and leachates) contained additive compounds (e.g. phthalates plasticizers, phosphorous flame retardants, antioxidants and UV-stabilizers). Differences in the number and concentration of additives between polymers and suppliers were also pointed out, indicating that the chemical signature cannot be generalized to a polymer and is rather product dependent. Nevertheless, no significant toxic effects was observed upon exposure to the leachates in two short-term bioassays targeting baseline toxicity (Microtox® test) and Pacific oyster Crassostrea gigas fertilization success and embryo-larval development. Overall, this study demonstrates that both petrochemical and bio-based food containers contain harmful additives and that it is not possible to predict material toxicity solely based on chemical analysis. Additionally, it highlights the complexity to assess and comprehend the additive content of plastic packaging due to the variability of their composition, suggesting that more transparency in polymer formulations is required to properly address the risk associated with such materials during their use and end of life.


Assuntos
Polipropilenos , Poluentes Químicos da Água , Polipropilenos/análise , Embalagem de Alimentos , Poluentes Químicos da Água/análise , Plásticos/análise , Poliésteres/análise , Polímeros/análise , Bioensaio , Medição de Risco
2.
Chemosphere ; 306: 135425, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35809744

RESUMO

The massive contamination of the environment by plastics is an increasing global scientific and societal concern. Knowing whether and how these pollutants affect the behaviour of keystone species is essential to identify environmental risks effectively. Here, we focus on the effect of plastic leachates on the behavioural response of the common blue mussel Mytilus edulis, an ecosystem engineer responsible for the creation of biogenic structures that modify the environment and provide numerous ecosystem functions and services. Specifically, we assess the effect of virgin polypropylene beads on mussels' chemotactic (i.e. a directional movement in response to a chemical stimulus) and chemokinetic (i.e. a non-directional change in movement properties such as speed, distance travelled or turning frequency in response to a chemical stimulus) responses to different chemical cues (i.e. conspecifics, injured conspecifics and a predator, the crab Hemigrapsus sanguineus). In the presence of predator cues, individual mussels reduced both their gross distance and speed, changes interpreted here as an avoidance behaviour. When exposed to polypropylene leachates, mussels moved less compared to control conditions, regardless of the cues tested. Additionally, in presence of crab cues with plastic leachates, mussels significantly changed the direction of movement suggesting a leachate-induced loss of their negative chemotaxis response. Taken together, our results indicate that the behavioural response of M. edulis is cue-specific and that its anti-predator behaviour as well as its mobility are impaired when exposed to microplastic leachates, potentially affecting the functioning of the ecosystem that the species supports.


Assuntos
Braquiúros , Mytilus edulis , Mytilus , Poluentes Químicos da Água , Animais , Ecossistema , Microplásticos , Mytilus edulis/fisiologia , Plásticos/química , Polipropilenos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA