Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biol Reprod ; 85(3): 442-51, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21593481

RESUMO

Nearly all male cystic fibrosis (CF) patients exhibit tissue abnormalities in the reproductive tract, a condition that renders them azoospermic and infertile. Two swine CF models have been reported recently that include respiratory and digestive manifestations that are comparable to human CF. The goal of this study was to determine the phenotypic changes that may be present in the vas deferens of these swine CF models. Tracts from CFTR(-/-) and CFTR(ΔF508/ΔF508) neonates revealed partial or total vas deferens and/or epididymis atresia at birth, while wild-type littermates were normal. Histopathological analysis revealed a range of tissue abnormalities and disruptions in tubular organization. Vas deferens epithelial cells were isolated and electrophysiological results support that CFTR(-/-) monolayers can exhibit Na(+) reabsorption but reveal no anion secretion following exposure to cAMP-generating compounds, suggesting that CFTR-dependent Cl(-) and/or HCO(3)(-) transport is completely impaired. SLC26A3 and SLC26A6 immunoreactivities were detected in all experimental groups, indicating that these two chloride-bicarbonate exchangers were present, but were either unable to function or their activity is electroneutral. In addition, no signs of increased mucus synthesis and/or secretion were present in the male excurrent ducts of these CF models. Results demonstrate a causal link between CFTR mutations and duct abnormalities that are manifested at birth.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/patologia , Modelos Animais de Doenças , Epididimo/anormalidades , Suínos , Ducto Deferente/anormalidades , Animais , Animais Geneticamente Modificados , Animais Recém-Nascidos , Ânions/metabolismo , Antiportadores de Cloreto-Bicarbonato/metabolismo , AMP Cíclico/metabolismo , Fibrose Cística/genética , Fibrose Cística/metabolismo , Masculino , Muco/metabolismo , Fenótipo , Ducto Deferente/metabolismo
2.
J Mol Biol ; 396(3): 697-707, 2010 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-19961856

RESUMO

Bacterial AAA+ ATPase ClpB cooperates with DnaK during reactivation of aggregated proteins. The ClpB-mediated disaggregation is linked to translocation of polypeptides through the channel in the oligomeric ClpB. Two isoforms of ClpB are produced in vivo: the full-length ClpB95 and ClpB80, which does not contain the substrate-interacting N-terminal domain. The biological role of the truncated isoform ClpB80 is unknown. We found that resolubilization of aggregated proteins in Escherichia coli after heat shock and reactivation of aggregated proteins in vitro and in vivo occurred at higher rates in the presence of ClpB95 with ClpB80 than with ClpB95 or ClpB80 alone. Combined amounts of ClpB95 and ClpB80 bound to aggregated substrates were similar to the amounts of either ClpB95 or ClpB80 bound to the substrates in the absence of another isoform. The ATP hydrolysis rate of ClpB95 with ClpB80, which is linked to the rate of substrate translocation, was not higher than the rates measured for the isolated ClpB95 or ClpB80. We postulate that a reaction step that takes place after substrate binding to ClpB and precedes substrate translocation is rate-limiting during aggregate reactivation, and its efficiency is enhanced in the presence of both ClpB isoforms. Moreover, we found that ClpB95 and ClpB80 form hetero-oligomers, which are similar in size to the homo-oligomers of ClpB95 or ClpB80. Thus, the mechanism of functional cooperation of the two isoforms of ClpB may be linked to their heteroassociation. Our results suggest that the functionality of other AAA+ ATPases may be also optimized by interaction and synergistic cooperation of their isoforms.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Escherichia coli/efeitos da radiação , Proteínas de Choque Térmico/metabolismo , Renaturação Proteica , Trifosfato de Adenosina/metabolismo , Endopeptidase Clp , Humanos , Hidrólise , Isoformas de Proteínas/metabolismo , Multimerização Proteica
3.
Invest Ophthalmol Vis Sci ; 50(3): 1271-82, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18997087

RESUMO

PURPOSE: To show that hypoxia is necessary to prevent opacification of the lens. Protein kinase C (PKC)-epsilon serves a role that is distinct from PKC-gamma when both PKC isoforms are expressed in the lens. PKCepsilon serves a very important role in hypoxic conditions, helping to prevent opacification of the lens. METHODS: Digital image analysis, confocal microscopy, dye transfer assay, coimmunoprecipitation, Western blot analysis, and enzyme activity assays were used, respectively, to study opacification of the lens, intercellular communications, cellular localization of connexin-43 (Cx43), and the interactions between PKCepsilon, PKCgamma, and Cx43 in the lens epithelial cells. RESULTS: Hypoxic conditions (1%-5% of oxygen) were very important in maintaining clarity of the lenses of wild-type (WT) mice. Normoxic conditions induced opacification of the WT lens. Lenses from the PKCepsilon-knockout mice underwent rapid opacification, even in hypoxic conditions. Hypoxia did not induce apoptosis in the lens epithelial cells, judging by the absence of active caspase-3, and it did not change intercellular communication and did not affect the number and localization of junctional Cx43 plaques in the lens epithelial cell culture. Hypoxia activated PKCepsilon, whereas phorbol ester (TPA), oxidation (H(2)O(2)), and insulin-like growth factor-1 (IGF-1) activated PKCgamma and decreased the activity of PKCepsilon. Hypoxia did not induce the phosphorylation of the Cx43. CONCLUSIONS: Hypoxia-induced activation of PKCepsilon is very important in surviving hypoxia and maintaining the clarity of the lens. However, PKCgamma is utilized in the control of Cx43 gap junctions.


Assuntos
Hipóxia/metabolismo , Cristalino/enzimologia , Proteína Quinase C-épsilon/metabolismo , Animais , Western Blotting , Catarata/prevenção & controle , Técnicas de Cultura de Células , Conexina 43/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Fator de Crescimento Insulin-Like I/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Fosforilação , Proteína Quinase C/metabolismo , Coelhos , Processamento de Sinais Assistido por Computador , Acetato de Tetradecanoilforbol/farmacologia
4.
Cell Signal ; 19(5): 958-67, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17210245

RESUMO

We have previously reported that protein kinase C gamma (PKC-gamma) is activated by phorbol-12-myristate-13-acetate (TPA) and that this causes PKC-gamma translocation to membranes and phosphorylation of the gap junction protein, connexin 43 (Cx43). This phosphorylation, on S368 of Cx43, causes disassembly of Cx43 out of cell junctional plaques resulting in the inhibition of dye transfer. The purpose of this study is to identify the specific role of zonula occludens protein-1 (ZO-1), a tight junction protein with recently established effects on gap junctions, in this PKC-gamma-driven Cx43 disassembly. For this purpose, ZO-1 levels in lens epithelial cells in culture were decreased by up to 70% using specific siRNA. The down-regulation of ZO-1 caused a stable interaction of PKC-gamma with Cx43 even without normal enzyme activation by TPA. However, after TPA activation of the PKC-gamma, the Cx43 did not disassemble out of plaques even though the PKC-gamma enzyme was activated and the Cx43 was phosphorylated on S368. Confocal microscopy demonstrated that the siRNA treatment caused a loss of ZO-1 from borders of large junctional Cx43 cell-to-cell plaques and resulted in the accumulation of Cx43 aggregates inside of cells. Loss of the specific "plaquetosome" arrangement of large Cx43 plaques surrounded by ZO-1 was accompanied by a complete loss of functional dye transfer. These results suggest that ZO-1 is required for Cx43 control, both for dye transfer, and, for the PKC-gamma-driven disassembly response.


Assuntos
Conexina 43/metabolismo , Junções Comunicantes/metabolismo , Proteínas de Membrana/metabolismo , Fosfoproteínas/metabolismo , Proteína Quinase C/metabolismo , Animais , Regulação para Baixo , Ativação Enzimática/efeitos dos fármacos , Células Epiteliais/metabolismo , Corantes Fluorescentes/metabolismo , Cristalino/citologia , Cristalino/metabolismo , Proteínas de Membrana/genética , Fosfoproteínas/genética , Fosforilação , RNA Interferente Pequeno , Coelhos , Transdução de Sinais , Acetato de Tetradecanoilforbol/análogos & derivados , Acetato de Tetradecanoilforbol/farmacologia , Transfecção , Proteína da Zônula de Oclusão-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA