Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2394: 19-29, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35094319

RESUMO

Cancer recurrence is responsible for a high percentage of cancer-related deaths. Primary tumor removal, chemotherapy, and radiotherapy often leave behind cancer cells that are clinically undetectable. Recent evidence has shown that subpopulations of these residual cancer cells enter into a prolonged dormant state, remaining quiescent for months to years, and eventually lead to metastases and relapse (Sosa et al. Nat Rev Cancer 14:611-622, 2014). Identifying the presence of and isolating these dormancy-capable cells (DCCs) from resected tumors or bodily fluids may therefore provide an opportunity to understand their biology and develop personalized treatments for patients at risk for relapse. Physical confinement in a stiff and porous 3D matrix, which inhibits proliferation, migration, and growth of the immobilized cells, has been shown to isolate DCC populations (Preciado et al. Technology 05:1-10, 2017; Reátegui et al. J Mater Chem B 2:7440-7448, 2014). Isolated DCCs can then be recovered from the gel and analyzed. Here we describe this immobilization method that can be used to isolate DCCs from heterogeneous cell populations that may also include dormancy-incapable cancer cells and host cells.


Assuntos
Recidiva Local de Neoplasia , Progressão da Doença , Humanos , Recidiva Local de Neoplasia/patologia , Neoplasia Residual/patologia
2.
J Biomed Mater Res B Appl Biomater ; 109(12): 2117-2130, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33983681

RESUMO

The principal cause of cancer deaths is the residual disease, which eventually results in metastases. Certain metastases are induced by disseminated dormancy-capable single cancer cells that can reside within the body undetected for months to years. Awakening of the dormant cells starts a cascade resulting in the patient's demise. Despite its established clinical significance, dormancy research and its clinical translation have been hindered by lack of in vitro models that can identify, isolate, and analyze dormancy-capable cells. We have previously shown that immobilization of cells in a stiff microenvironment induces dormancy in dormancy-capable cell lines. In this communication, we present a novel biomaterial and an in vitro immobilization method to isolate, analyze, and efficiently recover dormancy-capable cancer cells. MCF-7, MDA-MB-231, and MDA-MB-468 cells were individually coated with agarose using a microfluidic flow-focusing device. Coated cells were then immobilized in a rigid and porous silica gel. Dormancy induction by this process was validated by decreased Ki-67 expression, increased p38/ERK activity ratio, and reduced expression of CDK-2, cyclins D1, and E1. We showed that we can reliably and repeatedly induce dormancy in dormancy-capable MCF-7 cells and enhance the dormancy-capable sub-population in MDA-MB-231 cells. As expected, dormancy-resistant MDA-MB-468 cells did not survive immobilization. The dormant cells could be awakened on demand, by digesting the agarose gel in situ, and efficiently recovered by magnetically separating the silica gel, making the cells available for downstream analysis and testing. The awakened cells were shown to regain motility immediately, proliferating, and migrating normally.


Assuntos
Materiais Biocompatíveis , Neoplasias , Humanos , Células MCF-7 , Neoplasias/metabolismo , Sefarose/farmacologia , Dióxido de Silício/farmacologia
3.
Biotechnol Bioeng ; 117(10): 3066-3080, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32589792

RESUMO

Around 20-30% of ovarian cancer patients exhibit chemoresistance, but there are currently no methods to predict whether a patient will respond to chemotherapy. Here, we discovered that chemoresistant ovarian cancer cells exhibit enhanced survival in a quiescent state upon experiencing the stress of physical confinement. When immobilized in stiff silica gels, most ovarian cancer cells die within days, but surviving cells exhibit hallmarks of single-cell dormancy. Upon extraction from gels, the cells resume proliferation but demonstrate enhanced viability upon reimmobilization, indicating that initial immobilization selects for cells with a higher propensity to enter dormancy. RNA-seq analysis of the extracted cells shows they have signaling responses similar to cells surviving cisplatin treatment, and in comparison to chemoresistant patient cohorts, they share differentially expressed genes that are associated with platinum-resistance pathways. Furthermore, these extracted cells demonstrate greater resistance to cisplatin and paclitaxel, despite being proliferative. In contrast, serum starvation and hypoxia could not effectively select for chemoresistant cells upon removal of the environmental stress. These findings demonstrate that ovarian cancer chemoresistance and the ability to enter dormancy are linked, and immobilization rapidly distinguishes chemoresistant cells. This platform could be suitable for mechanistic studies, drug development, or as a clinical diagnostic tool.


Assuntos
Bioensaio/métodos , Sobrevivência Celular , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias Ovarianas/tratamento farmacológico , Paclitaxel/farmacologia , Sílica Gel/química , Antineoplásicos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Transdução de Sinais
4.
PLoS One ; 14(9): e0222006, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31490977

RESUMO

Dextranol, a reduced dextran, prevents damage to stored dry protein samples that unmodified dextran would otherwise cause. Desiccation protectants (xeroprotectants) like the polysaccharide dextran are critical for preserving dried protein samples by forming a rigid glass that protects entrapped protein molecules. Stably dried proteins are important for maintaining critical information in clinical samples like blood serum as well as maintaining activity of biologic drug compounds. However, we found that dextran reacts with both dried serum proteins and lyophilized purified proteins during storage, producing high-molecular weight Amadori-product conjugates. These conjugates appeared in a matter of days or weeks when stored at elevated temperatures (37° or 45°C), but also appeared on a timescale of months when stored at room temperature. We synthesized a less reactive dextranol by reducing dextran's anomeric carbon from an aldehyde to an alcohol. Serum samples dried in a dextranol-based matrix protected the serum proteins from forming high-molecular weight conjugates. The levels of four cancer-related serum biomarkers (prostate specific antigen, neuropilin-1, osteopontin, and matrix-metalloproteinase 7) decreased, as measured by immunoassay, when serum samples were stored for one to two weeks in dextran-based matrix. Switching to a dextranol-based xeroprotection matrix slightly reduced the damage to osteopontin and completely stopped any detectable damage during storage in the other three biomarkers when stored for a period of two weeks at 45°C. We also found that switching from dextran to dextranol in a lyophilization formulation eliminates this unwanted reaction, even at elevated temperatures. Dextranol offers a small and easy modification to dextran that significantly improves the molecule's function as a xeroprotectant by eliminating the potential for damaging protein-polysaccharide conjugation.


Assuntos
Dextranos/química , Dextranos/farmacologia , Preservação Biológica/métodos , Proteínas Sanguíneas/química , Dessecação , Composição de Medicamentos , Oxirredução , Estabilidade Proteica/efeitos dos fármacos , Temperatura
5.
Environ Sci Technol ; 51(2): 880-888, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-27977154

RESUMO

Emerging contaminants are principally personal care products not readily removed by conventional wastewater treatment and, with an increasing reliance on water recycling, become disseminated in drinking water supplies. Carbamazepine, a widely used neuroactive pharmaceutical, increasingly escapes wastewater treatment and is found in potable water. In this study, a mechanism is proposed by which carbamazepine resists biodegradation, and a previously unknown microbial biodegradation was predicted computationally. The prediction identified biphenyl dioxygenase from Paraburkholderia xenovorans LB400 as the best candidate enzyme for metabolizing carbamazepine. The rate of degradation described here is 40 times greater than the best reported rates. The metabolites cis-10,11-dihydroxy-10,11-dihydrocarbamazepine and cis-2,3-dihydroxy-2,3-dihydrocarbamazepine were demonstrated with the native organism and a recombinant host. The metabolites are considered nonharmful and mitigate the generation of carcinogenic acridine products known to form when advanced oxidation methods are used in water treatment. Other recalcitrant personal care products were subjected to prediction by the Pathway Prediction System and tested experimentally with P. xenovorans LB400. It was shown to biodegrade structurally diverse compounds. Predictions indicated hydrolase or oxygenase enzymes catalyzed the initial reactions. This study highlights the potential for using the growing body of enzyme-structural and genomic information with computational methods to rapidly identify enzymes and microorganisms that biodegrade emerging contaminants.


Assuntos
Biodegradação Ambiental , Carbamazepina/metabolismo , Águas Residuárias/química , Purificação da Água , Abastecimento de Água
6.
J Microencapsul ; 33(5): 412-420, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27358010

RESUMO

Silica gel microspheres are ideal materials for bioencapsulation due to their mechanical properties, biocompatibility, and stability. Encapsulated cells are isolated from the environment and protected from predators, changes in pH, and osmotic stress. However methods for the production of silica gel microspheres suitable for bioencapsulation are not well established. This paper describes a method for the production of monodisperse silicon alkoxide cross-linked silica nanoparticle (SNP) gel microspheres for bioencapsulation in which silica gel precursor is extruded from a needle into a cross-flowing stream of mineral oil. Microspheres produced ranged from 1.3 to 2.9 mm in diameter with coefficients of variation ranging from 2 to 6%. Microsphere size was mainly controlled by the flowrate of the cross-flowing oil and smaller microspheres generally had larger coefficients of variation. The method described in this paper can be optimised to produce silica gel microspheres with a diverse range of compositions and properties.

7.
Sci Rep ; 6: 24186, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27068126

RESUMO

Despite abundant research conducted on cancer biomarker discovery and validation, to date, less than two-dozen biomarkers have been approved by the FDA for clinical use. One main reason is attributed to inadvertent use of low quality biospecimens in biomarker research. Most proteinaceous biomarkers are extremely susceptible to pre-analytical factors such as collection, processing, and storage. For example, cryogenic storage imposes very harsh chemical, physical, and mechanical stresses on biospecimens, significantly compromising sample quality. In this communication, we report the development of an electrospun lyoprotectant matrix and isothermal vitrification methodology for non-cryogenic stabilization and storage of liquid biospecimens. The lyoprotectant matrix was mainly composed of trehalose and dextran (and various low concentration excipients targeting different mechanisms of damage), and it was engineered to minimize heterogeneity during vitrification. The technology was validated using five biomarkers; LDH, CRP, PSA, MMP-7, and C3a. Complete recovery of LDH, CRP, and PSA levels was achieved post-rehydration while more than 90% recovery was accomplished for MMP-7 and C3a, showing promise for isothermal vitrification as a safe, efficient, and low-cost alternative to cryogenic storage.


Assuntos
Proteínas Sanguíneas/análise , Preservação Biológica/métodos , Soro/química , Vitrificação , Humanos
8.
Biophys J ; 107(10): 2253-62, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25418294

RESUMO

Long-term storage of desiccated nucleated mammalian cells at ambient temperature may be accomplished in a stable glassy state, which can be achieved by removal of water from the biological sample in the presence of glass-forming agents including trehalose. The stability of the glass may be compromised due to a nonuniform distribution of residual water and trehalose within and around the desiccated cells. Thus, quantification of water and trehalose contents at the single-cell level is critical for predicting the glass formation and stability for dry storage. Using Raman microspectroscopy, we estimated the trehalose and residual water contents in the microenvironment of spin-dried cells. Individual cells with or without intracellular trehalose were embedded in a solid thin layer of extracellular trehalose after spin-drying. We found strong evidence suggesting that the residual water was bound at a 2:1 water/trehalose molar ratio in both the extracellular and intracellular milieus. Other than the water associated with trehalose, we did not find any more residual water in the spin-dried sample, intra- or extracellularly. The extracellular trehalose film exhibited characteristics of an amorphous state with a glass transition temperature of ?22°C. The intracellular milieu also dried to levels suitable for glass formation at room temperature. These findings demonstrate a method for quantification of water and trehalose in desiccated specimens using confocal Raman microspectroscopy. This approach has broad use in desiccation studies to carefully investigate the relationship of water and trehalose content and distribution with the tolerance to drying in mammalian cells.


Assuntos
Dessecação , Análise Espectral Raman , Trealose/metabolismo , Água/metabolismo , Espaço Extracelular/metabolismo , Células Hep G2 , Humanos , Espaço Intracelular/metabolismo , Análise de Célula Única
9.
J Mater Chem B ; 2(42): 7440-7448, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-32261969

RESUMO

In this study, human foreskin fibroblasts and mouse embryonic fibroblasts were encapsulated in mechanically reversible, THEOS and THEOS-PEG gels that completely immobilized them restricting their motility, growth and proliferation. The changes in the membrane integrity and metabolic activity (MA) of the immobilized cells were measured by IR spectroscopy and fluorescence microscopy. To explore the effects of surface chemistry and porosity on immobilized cell MA, different amounts of a biocompatible polymer, polyethylene glycol PEG, was incorporated into the silica gels. To explore the effects of the proliferative stress, in selected experiments, cellular proliferation was arrested prior to immobilization by exposing the cells to irradiation. Four main factors were identified that affect the long-term survival of the cells within the immobilization matrix: (1) porosity/permeability of the gel, (2) structural homogeneity of the gel, (3) specific interactions between the cell membrane and the gel surface and (4) the proliferative stress. It was shown that the immobilized cells could easily be mechanically recovered from the gel and upon incubation, proliferated normally. It is believed that the gels and the matrix developed here have very significant potential applications in tissue engineering and in personalized cancer treatment.

10.
J Phys Chem B ; 113(39): 13048-60, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19736999

RESUMO

Molecular motions and properties of water and biomacromolecules change when confined in nanoporous matrices. Freezing and melting points of water are depressed, and generally, the activity of enzymes and stability of proteins are increased. We performed temperature ramp FTIR analyses of silica matrix confined water and proteins to identify the kinetic and thermodynamic transitions of water at cryogenic temperatures and to understand the water-protein interactions in confinement. In our studies, confined water did not freeze at temperatures as low as -180 degrees C but underwent liquid-liquid and liquid-glass transitions during cooling. During warming from cryogenic temperatures, the formations of cubic and hexagonal ice were detected. Additionally, the changes in the secondary structures of proteins correlated to the changes in the H-bonding characteristics of the confined water. Our results showed that the kinetic and thermodynamic transitions of water dictate the structural transitions of encapsulated proteins. Evidence was obtained for the universal behavior of water in close proximity to surfaces and in the hydration shells of isolated and cytoplasmic proteins (in intact encapsulated bacteria and mammalian cells).


Assuntos
Proteínas/química , Água/química , Animais , Linhagem Celular Tumoral , Galinhas , Congelamento , Geobacter/química , Humanos , Cinética , Muramidase/química , Transição de Fase , Estrutura Secundária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA