Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37808776

RESUMO

HIV-associated neurological disorder (HAND) is a serious complication of HIV infection, marked by neurotoxicity induced by viral proteins like Tat. Substance abuse exacerbates neurocognitive impairment in people living with HIV. There is an urgent need for effective therapeutic strategies to combat HAND comorbid with Cocaine Use Disorder (CUD). Our analysis of the HIV and cocaine-induced transcriptomes in primary cortical cultures revealed a significant overexpression of the macrophage-specific gene, aconitate decarboxylase 1 (Acod1), caused by the combined insults of HIV and cocaine. ACOD1 protein converts the tricarboxylic acid intermediate cis-aconitate into itaconate during the activation of inflammation. The itaconate produced facilitates cytokine production and subsequently activates anti-inflammatory transcription factors, shielding macrophages from infection-induced cell death. While the role of itaconate' in limiting inflammation has been studied in peripheral macrophages, its immunometabolic function remains unexplored in HIV and cocaine-exposed microglia. We assessed in this model system the potential of 4-octyl-itaconate (4OI), a cell-penetrable esterified form of itaconate known for its potent anti-inflammatory properties and potential therapeutic applications. We administered 4OI to primary cortical cultures exposed to Tat and cocaine. 4OI treatment increased the number of microglial cells in both untreated and Tat±Cocaine-treated cultures and also reversed the morphological altercations induced by Tat and cocaine. In the presence of 4OI, microglial cells also appeared more ramified, resembling the quiescent microglia. Consistent with these results, 4OI treatment inhibited the secretion of the proinflammatory cytokines IL-1α, IL-1ß, IL-6, and MIP1-α induced by Tat and cocaine. Transcriptome profiling further determined that Nrf2 target genes such as NAD(P)H quinone oxidoreductase 1 (Nqo1), Glutathione S-transferase Pi (Gstp1), and glutamate cysteine ligase catalytic (Gclc), were most significantly activated in Tat-4OI treated cultures, relative to Tat alone. Further, genes associated with cytoskeleton dynamics in inflammatory microglia were downregulated by 4OI treatment. Together, the results strongly suggest 4-octyl-itaconate holds promise as a potential candidate for therapeutic development aimed at addressing HAND coupled with CUD comorbidities.

3.
BMJ Open ; 11(5): e047059, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34049919

RESUMO

BACKGROUND: Acute tubulointerstitial nephritis (TIN) is a significant cause of acute renal failure in paediatric and adult patients. There are no large paediatric series focusing on the aetiology, treatment and courses of acute TIN. PATIENTS, DESIGN AND SETTING: We collected retrospective clinical data from paediatric patients with acute biopsy-proven TIN by means of an online survey. Members of four professional societies were invited to participate. RESULTS: Thirty-nine physicians from 18 countries responded. 171 patients with acute TIN were included (54% female, median age 12 years). The most frequent causes were tubulointerstitial nephritis and uveitis syndrome in 31% and drug-induced TIN in 30% (the majority of these caused by non-steroidal anti-inflammatory drugs). In 28% of patients, no initiating noxae were identified (idiopathic TIN). Median estimated glomerular filtration rate (eGFR) rose significantly from 31 at time of renal biopsy to 86 mL/min/1.73 m2 3-6 months later (p<0.001). After 3-6 months, eGFR normalised in 41% of patients (eGFR ≥90 mL/min/1.73 m2), with only 3% having severe or end-stage impairment of renal function (<30 mL/min/1.73 m2). 80% of patients received corticosteroid therapy. Median eGFR after 3-6 months did not differ between steroid-treated and steroid-untreated patients. Other immunosuppressants were used in 18% (n=31) of patients, 21 of whom received mycophenolate mofetil. CONCLUSIONS: Despite different aetiologies, acute paediatric TIN had a favourable outcome overall with 88% of patients showing no or mild impairment of eGFR after 3-6 months. Prospective randomised controlled trials are needed to evaluate the efficacy of glucocorticoid treatment in paediatric patients with acute TIN.


Assuntos
Nefrite Intersticial , Adulto , Criança , Estudos Transversais , Feminino , Humanos , Internet , Masculino , Estudos Prospectivos , Estudos Retrospectivos
4.
Biochem Pharmacol ; 182: 114280, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33049245

RESUMO

Stress granules (SGs) are non-membranous cytosolic protein-RNA aggregates that process mRNAs through stalled translation initiation in response to cellular stressors and in disease. DEAD-Box RNA helicase 3 (DDX3) is an active target of drug development for the treatment of viral infections, cancers, and neurodegenerative diseases. DDX3 plays a critical role in RNA metabolism, including SGs, but the role of DDX3 enzymatic activity in SG dynamics is not well understood. Here, we address this question by determining the effects of DDX3 inhibition on the dynamics of SG assembly and disassembly. We use two small molecule inhibitors of DDX3, RK33 and 16D, with distinct inhibitory mechanisms that target DDX3's ATPase activity and RNA helicase site, respectively. We find that both DDX3 inhibitors reduce the assembly of SGs, with a more pronounced reduction from RK-33. In contrast, both compounds only marginally affect the disassembly of SGs. RNA-mediated knockdown of DDX3 caused a similar reduction in SG assembly and minimal effect on SG disassembly. Collectively, these results reveal that the enzymatic activity of DDX3 is required for the assembly of SGs and pharmacological inhibition of DDX3 could be relevant for the treatment of SG-dependent pathologies.


Assuntos
Azepinas/farmacologia , Grânulos Citoplasmáticos/metabolismo , RNA Helicases DEAD-box/antagonistas & inibidores , RNA Helicases DEAD-box/metabolismo , Imidazóis/farmacologia , Linhagem Celular Tumoral , Grânulos Citoplasmáticos/efeitos dos fármacos , Humanos , RNA Interferente Pequeno/antagonistas & inibidores , RNA Interferente Pequeno/metabolismo
5.
Front Pediatr ; 8: 155, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32432059

RESUMO

Background: Transplant-associated thrombotic microangiopathy (TAM) is a life-threatening complication of hematopoietic stem cell transplantation (HSCT). There is some evidence of endothelial injury playing a significant role in TAM development. The efficacy of defibrotide was demonstrated for prophylaxis and treatment of another HSCT-associated endothelial damage syndrome-liver veno-occlusive disease. The data for defibrotide usage in TAM are limited. Case Description: A 9-year old boy underwent HSCT from a matched unrelated donor for monosomy seven-associated myelodysplastic syndrome treatment. A myeloablative preparative regimen and post-transplant immunosuppression with cyclophosphamide on days +3 and +4 and a combination of tacrolimus with mycophenolate mofetil from day +5 were used. From day +61, sustained fever with progressive neurologic impairment and no evidence of infection was observed. On day +68, the patient developed severe TAM with acute kidney injury requiring renal replacement therapy (RRT). Defibrotide therapy 25 mg/kg/day was administered for 7 days with resolution of TAM symptoms. It was followed by multiple hemorrhagic episodes-epistaxis, hemorrhagic cystitis, and renal hemorrhage, which are presumed to be the complications of defibrotide therapy. Conclusion: Defibrotide could be an effective therapy for TAM, but adequate doses, duration of therapy, and drug safety profile both for pediatric and adult patients need to be evaluated by randomized prospective studies.

6.
J Neuroimmune Pharmacol ; 15(2): 209-223, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31802418

RESUMO

HIV-1 Associated Neurocognitive Disorder (HAND) is a common and clinically detrimental complication of HIV infection. Viral proteins, including Tat, released from infected cells, cause neuronal toxicity. Substance abuse in HIV-infected patients greatly influences the severity of neuronal damage. To repurpose small molecule inhibitors for anti-HAND therapy, we employed MOLIERE, an AI-based literature mining system that we developed. All human genes were analyzed and prioritized by MOLIERE to find previously unknown targets connected to HAND. From the identified high priority genes, we narrowed the list to those with known small molecule ligands developed for other applications and lacking systemic toxicity in animal models. To validate the AI-based process, the selective small molecule inhibitor of DDX3 helicase activity, RK-33, was chosen and tested for neuroprotective activity. The compound, previously developed for cancer treatment, was tested for the prevention of combined neurotoxicity of HIV Tat and cocaine. Rodent cortical cultures were treated with 6 or 60 ng/ml of HIV Tat and 10 or 25 µM of cocaine, which caused substantial toxicity. RK-33 at doses as low as 1 µM greatly reduced the neurotoxicity of Tat and cocaine. Transcriptome analysis showed that most Tat-activated transcripts are microglia-specific genes and that RK-33 blocks their activation. Treatment with RK-33 inhibits the Tat and cocaine-dependent increase in the number and size of microglia and the proinflammatory cytokines IL-6, TNF-α, MCP-1/CCL2, MIP-2, IL-1α and IL-1ß. These findings reveal that inhibition of DDX3 may have the potential to treat not only HAND but other neurodegenerative diseases. Graphical Abstract RK-33, selective inhibitor of Dead Box RNA helicase 3 (DDX3) protects neurons from combined Tat and cocaine neurotoxicity by inhibition of microglia activation and production of proinflammatory cytokines.


Assuntos
Azepinas/farmacologia , Cocaína/toxicidade , RNA Helicases DEAD-box/antagonistas & inibidores , Imidazóis/farmacologia , Microglia/efeitos dos fármacos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/toxicidade , Complexo AIDS Demência/tratamento farmacológico , Complexo AIDS Demência/enzimologia , Animais , Azepinas/uso terapêutico , Células Cultivadas , RNA Helicases DEAD-box/metabolismo , Inibidores da Captação de Dopamina/toxicidade , Relação Dose-Resposta a Droga , Feminino , Imidazóis/uso terapêutico , Masculino , Microglia/enzimologia , Ratos , Ratos Sprague-Dawley
7.
Front Microbiol ; 6: 894, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26441850

RESUMO

Illicit drugs, such as cocaine, are known to increase the likelihood and severity of HIV-1 associated neurocognitive disorders (HAND). In the current studies synaptic integrity was assessed following exposure to low concentrations of the HIV-1 viral protein Tat 1-86B, with or without cocaine, by quantifying filamentous actin (F-actin) rich structures (i.e., puncta and dendritic spines) on neuronal dendrites in vitro. In addition, the synapse-protective effects of either R-Equol (RE) or S-Equol (SE; derivatives of the soy isoflavone, daidzein) were determined. Individually, neither low concentrations of HIV-1 Tat (10 nM) nor low concentrations of cocaine (1.6 µM) had any significant effect on F-actin puncta number; however, the same low concentrations of HIV-1 Tat + cocaine in combination significantly reduced dendritic synapses. This synaptic reduction was prevented by pre-treatment with either RE or SE, in an estrogen receptor beta dependent manner. In sum, targeted therapeutic intervention with SE may prevent HIV-1 + drug abuse synaptopathy, and thereby potentially influence the development of HAND.

8.
J Neurochem ; 128(1): 140-51, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23875777

RESUMO

HIV-1 infects the brain and, despite antiretroviral therapy, many infected individuals suffer from HIV-1-associated neurocognitive disorders (HAND). HAND is associated with dendritic simplification and synaptic loss. Prevention of synaptodendritic damage may ameliorate or forestall neurocognitive decline in latent HIV-1 infections. The HIV-1 transactivating protein (Tat) is produced during viral latency in the brain and may cause synaptodendritic damage. This study examined the integrity of the dendritic network after exposure to HIV-1 Tat by labeling filamentous actin (F-actin)-rich structures (puncta) in primary neuronal cultures. After 24 h of treatment, HIV-1 Tat was associated with the dendritic arbor and produced a significant reduction of F-actin-labeled dendritic puncta as well as loss of dendrites. Pre-treatment with either of two plant-derived phytoestrogen compounds (daidzein and liquiritigenin), significantly reduced synaptodendritic damage following HIV-1 Tat treatment. In addition, 6 days after HIV-1 Tat treatment, treatment with either daidzein, or liquiritigenin enhanced recovery, via the estrogen receptor, from HIV-1 Tat-induced synaptodendritic damage. These results suggest that either liquiritigenin or daidzein may not only attenuate acute synaptodendritic injury in HIV-1 but may also promote recovery from synaptodendritic damage. The HIV-1 transactivating protein (Tat) is produced during viral latency in the brain. Treatment with either daidzein or liquiritigenin restored the loss of synaptic connectivity produced by HIV-1 Tat. This neurorestoration was mediated by estrogen receptors (ER). These results suggest that plant-derived phytoestrogens may promote recovery from HIV-1-induced synaptodendritic damage.


Assuntos
Dendritos/efeitos dos fármacos , Dendritos/metabolismo , Neurônios/fisiologia , Fitoestrógenos/farmacologia , Recuperação de Função Fisiológica/fisiologia , Sinapses/efeitos dos fármacos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Dendritos/patologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos , Sinapses/fisiologia
9.
Exp Neurol ; 248: 228-35, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23811015

RESUMO

HIV-1 enters the central nervous system early in infection; although HIV-1 does not directly infect neurons, HIV-1 may cause a variety of neurological disorders. Neuronal loss has been found in HIV-1, but synaptodendritic injury is more closely associated with the neurocognitive disorders of HIV-1. The HIV-1 transactivator of transcription (Tat) protein causes direct and indirect damage to neurons. The cysteine rich domain (residues 22-37) of Tat is important for producing neuronal death; however, little is known about the effects of the Tat protein functional domains on the dendritic network. The ability of HIV-1 Tat 1-101 Clades B and C, Tat 1-86 and Tat 1-72 proteins, as well as novel peptides (truncated 47-57, 1-72δ31-61, and 1-86 with a mutation at Cys22) to produce early synaptodendritic injury (24h), relative to later cell death (48h), was examined using cell culture. Treatment of primary hippocampal neurons with Tat proteins 1-72, 1-86 and 1-101B produced a significant early reduction in F-actin labeled puncta, implicating that these peptides play a role in synaptodendritic injury. Variants with a mutation, deletion, or lack of a cysteine rich region (1-86[Cys22], 1-101C, 1-72δ31-61, or 47-57) did not cause a significant reduction in F-actin rich puncta. Tat 1-72, 1-86, and 1-101B proteins did not significantly differ from one another, indicating that the second exon (73-86 or 73-101) does not play a significant role in the reduction of F-actin puncta. Conversely, peptides with a mutation, deletion, or lack of the cysteine rich domain (22-37) failed to produce a loss of F-actin puncta, indicating that the cysteine rich domain plays a key role in synaptodendritic injury. Collectively, these results suggest that for Tat proteins, 1) synaptodendritic injury occurs early, relative to cell death, and 2) the cysteine rich domain of the first exon is key for synaptic loss. Preventing such early synaptic loss may attenuate HIV-1 associated neurocognitive disorders.


Assuntos
Morte Celular/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Mutação , Neurônios/efeitos dos fármacos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/farmacologia , Animais , Morte Celular/genética , Células Cultivadas , Cisteína/genética , HIV-1/genética , HIV-1/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
10.
PLoS One ; 7(5): e37540, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22629415

RESUMO

BACKGROUND: HIV-1 viral protein Tat partially mediates the neural dysfunction and neuronal cell death associated with HIV-1 induced neurodegeneration and neurocognitive disorders. Soy isoflavones provide protection against various neurotoxic insults to maintain neuronal function and thus help preserve neurocognitive capacity. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrate in primary cortical cell cultures that 17ß-estradiol or isoflavones (genistein or daidzein) attenuate Tat(1-86)-induced expression of apoptotic proteins and subsequent cell death. Exposure of cultured neurons to the estrogen receptor antagonist ICI 182,780 abolished the anti-apoptotic actions of isoflavones. Use of ERα or ERß specific antagonists determined the involvement of both ER isoforms in genistein and daidzein inhibition of caspase activity; ERß selectively mediated downregulation of mitochondrial pro-apoptotic protein Bax. The findings suggest soy isoflavones effectively diminished HIV-1 Tat-induced apoptotic signaling. CONCLUSIONS/SIGNIFICANCE: Collectively, our results suggest that soy isoflavones represent an adjunctive therapeutic option with combination anti-retroviral therapy (cART) to preserve neuronal functioning and sustain neurocognitive abilities of HIV-1 infected persons.


Assuntos
Apoptose/efeitos dos fármacos , Genisteína/farmacologia , HIV-1 , Isoflavonas/farmacologia , Neurônios/efeitos dos fármacos , Fitoestrógenos/farmacologia , Receptores de Estrogênio/metabolismo , Animais , Regulação para Baixo/efeitos dos fármacos , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Neurônios/metabolismo , Neurônios/virologia , Fragmentos de Peptídeos/farmacologia , Ratos , Ratos Sprague-Dawley , Produtos do Gene tat do Vírus da Imunodeficiência Humana/farmacologia
11.
Synapse ; 64(11): 829-38, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20340172

RESUMO

The protective actions of estrogen have been well evaluated in various models of neurodegeneration. These neuroprotective mechanisms may include a direct neuronal antiapoptotic effect as estrogen modulates actions of key regulators of the mitochondrial/intrinsic apoptotic cascade. We tested the ability of estrogen to protect against apoptotic signaling in cortical cell cultures exposed to Tat 1-86 (50 nM), and additionally, whether the beneficial actions of estrogen involved an estrogen receptor sensitive mechanism. We demonstrated that estrogen pretreatment significantly delayed Tat-induced cell death in primary cortical cultures. Pretreatment with 17ß-estradiol (10 nM) attenuated the increased expression of antiapoptotic protein Bcl-2, proapoptotic protein Bax and activation of caspases linked to mitochondrial apoptotic pathway following Tat exposure. In addition, select components of apoptotic pathway signaling appear more sensitive to estrogen receptor (ER) activation, as the addition of ER antagonist ICI 182780 reversed estrogen downregulation of Bax and caspase 3, while estrogen effects on Tat-induced Bcl-2 and caspase 9 expression were maintained. Moreover, the addition of preferential ERα and ERß antagonists (MPP dihydrochloride and PHTPP) indicated that estrogen effects on caspase 3 may be mediated by both receptor subtypes, whereas, was more involved in estrogen effects on Bax. Our data suggest that estrogen intervenes against HIV-1 Tat-induced cortical neuronal dysfunction via intersecting mitochondrial apoptotic pathway signaling in an ER-sensitive manner.


Assuntos
Apoptose/efeitos dos fármacos , Estradiol/farmacologia , Receptor beta de Estrogênio/metabolismo , Estrogênios/farmacologia , Transdução de Sinais/efeitos dos fármacos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/farmacologia , Análise de Variância , Animais , Animais Recém-Nascidos , Caspases/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Córtex Cerebral/citologia , Interações Medicamentosas , Ensaio de Imunoadsorção Enzimática/métodos , Antagonistas de Estrogênios/farmacologia , Neurônios/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Proteína X Associada a bcl-2/metabolismo
12.
Exp Neurol ; 219(2): 586-90, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19615365

RESUMO

This study reports that the cysteine 22-->glycine 22 substitution in the HIV-1 Tat 1-86 B significantly attenuates its neurotoxicity. Consistent with previous studies, direct interactions of rat hippocampal cells with Tat 1-86 B were shown to cause dose-dependent and time-dependent neurotoxicity associated with activation of caspases from the mitochondrial apoptotic pathway. Despite the similar binding/uptake properties, Cys22 Tat 1-86 B failed to induce significant neurotoxicity and activation of caspases 9 and 3/7 in hippocampal primary cultures. Results of the study underscore the important role of cysteine-rich domain in mechanism of Tat-mediated neurotoxicity.


Assuntos
Hipocampo/citologia , Neurônios/efeitos dos fármacos , Ativação Transcricional/fisiologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/farmacologia , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Células Cultivadas , Cisteína/genética , Relação Dose-Resposta a Droga , Produtos do Gene tat , Humanos , Ratos , Ratos Sprague-Dawley , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
13.
J Neurosci Res ; 74(6): 917-27, 2003 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-14648597

RESUMO

Mitochondria under oxidative stress are thought to play a key role in various neurodegenerative disorders by directing neurons to cell death. Protection by antioxidants against oxidative stress to mitochondria may prove to be beneficial in delaying onset or progression of these diseases. We have investigated the ability of gamma-glutamylcysteine ethyl ester (GCEE) to upregulate mitochondrial glutathione (GSH) in vivo or in vitro and protect against subsequent in vitro peroxynitrite (ONOO-) damage. Mitochondria pretreated in vitro with GCEE were protected against oxidative damage induced by peroxynitrite, as assessed by mitochondrial swelling, changes in mitochondrial membrane potential, 3-nitrotyrosine formation, protein carbonyl formation, and cytochrome c release. Loss of mitochondrial function in neuronal cell cultures by the oxidants 2,2,'Azobis(2-amidino-propane)dihydrochloride (AAPH) and ONOO- was ameliorated by treatment with GCEE. In vivo studies showed that mitochondria isolated from animals injected intraperitoneally with GCEE were protected partially against oxidative modifications induced by ONOO-. Taken together, these results suggest that GCEE may be effective in increasing mitochondrial GSH and may be prove to have therapeutic relevance in neurodegenerative disorders associated with oxidative stress and mitochondrial dysfunction.


Assuntos
Dipeptídeos/farmacologia , Glutationa/biossíntese , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Ácido Peroxinitroso/toxicidade , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Gerbillinae , Glutationa/fisiologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Mitocôndrias/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA