Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Epilepsia ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38794998

RESUMO

OBJECTIVE: Focal cooling is emerging as a relevant therapy for drug-resistant epilepsy (DRE). However, we lack data on its effectiveness in controlling seizures that originate in deep-seated areas like the hippocampus. We present a thermoelectric solution for focal brain cooling that specifically targets these brain structures. METHODS: A prototype implantable device was developed, including temperature sensors and a cannula for penicillin injection to create an epileptogenic zone (EZ) near the cooling tip in a non-human primate model of epilepsy. The mesial temporal lobe was targeted with repeated penicillin injections into the hippocampus. Signals were recorded from an sEEG (Stereoelectroencephalography) lead placed 2 mm from the EZ. Once the number of seizures had stabilized, focal cooling was applied, and temperature and electroclinical events were monitored using a customized detection algorithm. Tests were performed on two Macaca fascicularis monkeys at three temperatures. RESULTS: Hippocampal seizures were observed 40-120 min post-injection, their duration and frequency stabilized at around 120 min. Compared to the control condition, a reduction in the number of hippocampal seizures was observed with cooling to 21°C (Control: 4.34 seizures, SD 1.704 per 20 min vs Cooling to 21°C: 1.38 seizures, SD 1.004 per 20 min). The effect was more pronounced with cooling to 17°C, resulting in an almost 80% reduction in seizure frequency. Seizure duration and number of interictal discharges were unchanged following focal cooling. After several months of repeated penicillin injections, hippocampal sclerosis was observed, similar to that recorded in humans. In addition, seizures were identified by detecting temperature variations of 0.3°C in the EZ correlated with the start of the seizures. SIGNIFICANCE: In epilepsy therapy, the ultimate aim is total seizure control with minimal side effects. Focal cooling of the EZ could offer an alternative to surgery and to existing neuromodulation devices.

2.
J Neural Eng ; 18(5)2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34425566

RESUMO

Objective.The evaluation of the long-term stability of ElectroCorticoGram (ECoG) signals is an important scientific question as new implantable recording devices can be used for medical purposes such as Brain-Computer Interface (BCI) or brain monitoring.Approach.The long-term clinical validation of wireless implantable multi-channel acquisition system for generic interface with neurons (WIMAGINE), a wireless 64-channel epidural ECoG recorder was investigated. The WIMAGINE device was implanted in two quadriplegic patients within the context of a BCI protocol. This study focused on the ECoG signal stability in two patients bilaterally implanted in June 2017 (P1) and in November 2019 (P2).Methods. The ECoG signal was recorded at rest prior to each BCI session resulting in a 32 month and in a 14 month follow-up for P1 and P2 respectively. State-of-the-art signal evaluation metrics such as root mean square (RMS), the band power (BP), the signal to noise ratio (SNR), the effective bandwidth (EBW) and the spectral edge frequency (SEF) were used to evaluate stability of signal over the implantation time course. The time-frequency maps obtained from task-related motor activations were also studied to investigate the long-term selectivity of the electrodes.Mainresults.Based on temporal linear regressions, we report a limited decrease of the signal average level (RMS), spectral distribution (BP) and SNR, and a remarkable steadiness of the EBW and SEF. Time-frequency maps obtained during motor imagery, showed a high level of discrimination 1 month after surgery and also after 2 years.Conclusions.The WIMAGINE epidural device showed high stability over time. The signal evaluation metrics of two quadriplegic patients during 32 months and 14 months respectively provide strong evidence that this wireless implant is well-suited for long-term ECoG recording.Significance.These findings are relevant for the future of implantable BCIs, and could benefit other patients with spinal cord injury, amyotrophic lateral sclerosis, neuromuscular diseases or drug-resistant epilepsy.


Assuntos
Interfaces Cérebro-Computador , Encéfalo , Eletrocorticografia , Eletrodos Implantados , Eletroencefalografia , Espaço Epidural , Humanos , Tecnologia sem Fio
3.
Lancet Neurol ; 18(12): 1112-1122, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31587955

RESUMO

BACKGROUND: Approximately 20% of traumatic cervical spinal cord injuries result in tetraplegia. Neuroprosthetics are being developed to manage this condition and thus improve the lives of patients. We aimed to test the feasibility of a semi-invasive technique that uses brain signals to drive an exoskeleton. METHODS: We recruited two participants at Clinatec research centre, associated with Grenoble University Hospital, Grenoble, France, into our ongoing clinical trial. Inclusion criteria were age 18-45 years, stability of neurological deficits, a need for additional mobility expressed by the patient, ambulatory or hospitalised monitoring, registration in the French social security system, and signed informed consent. The exclusion criteria were previous brain surgery, anticoagulant treatments, neuropsychological sequelae, depression, substance dependence or misuse, and contraindications to magnetoencephalography (MEG), EEG, or MRI. One participant was excluded because of a technical problem with the implants. The remaining participant was a 28-year-old man, who had tetraplegia following a C4-C5 spinal cord injury. Two bilateral wireless epidural recorders, each with 64 electrodes, were implanted over the upper limb sensorimotor areas of the brain. Epidural electrocorticographic (ECoG) signals were processed online by an adaptive decoding algorithm to send commands to effectors (virtual avatar or exoskeleton). Throughout the 24 months of the study, the patient did various mental tasks to progressively increase the number of degrees of freedom. FINDINGS: Between June 12, 2017, and July 21, 2019, the patient cortically controlled a programme that simulated walking and made bimanual, multi-joint, upper-limb movements with eight degrees of freedom during various reach-and-touch tasks and wrist rotations, using a virtual avatar at home (64·0% [SD 5·1] success) or an exoskeleton in the laboratory (70·9% [11·6] success). Compared with microelectrodes, epidural ECoG is semi-invasive and has similar efficiency. The decoding models were reusable for up to approximately 7 weeks without recalibration. INTERPRETATION: These results showed long-term (24-month) activation of a four-limb neuroprosthetic exoskeleton by a complete brain-machine interface system using continuous, online epidural ECoG to decode brain activity in a tetraplegic patient. Up to eight degrees of freedom could be simultaneously controlled using a unique model, which was reusable without recalibration for up to about 7 weeks. FUNDING: French Atomic Energy Commission, French Ministry of Health, Edmond J Safra Philanthropic Foundation, Fondation Motrice, Fondation Nanosciences, Institut Carnot, Fonds de Dotation Clinatec.


Assuntos
Interfaces Cérebro-Computador , Exoesqueleto Energizado , Neuroestimuladores Implantáveis , Estudo de Prova de Conceito , Quadriplegia/reabilitação , Tecnologia sem Fio , Adulto , Vértebras Cervicais/diagnóstico por imagem , Vértebras Cervicais/lesões , Vértebras Cervicais/cirurgia , Espaço Epidural/diagnóstico por imagem , Espaço Epidural/cirurgia , Humanos , Imageamento por Ressonância Magnética/métodos , Magnetoencefalografia/métodos , Masculino , Quadriplegia/diagnóstico por imagem , Quadriplegia/cirurgia , Córtex Sensório-Motor/diagnóstico por imagem , Córtex Sensório-Motor/cirurgia , Traumatismos da Medula Espinal/diagnóstico por imagem , Traumatismos da Medula Espinal/reabilitação , Traumatismos da Medula Espinal/cirurgia , Tecnologia sem Fio/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA