Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Nanosci Au ; 4(1): 21-29, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38406313

RESUMO

The nanopore sensing method holds the promise of delivering a single molecule technology for identification of biological proteins, direct detection of post-translational modifications, and perhaps de novo determination of a protein's amino acid sequence. The key quantity measured in such nanopore sensing experiments is the magnitude of the ionic current passing through a nanopore blocked by a polypeptide chain. Establishing a relationship between the amino acid sequence of a peptide fragment confined within a nanopore and the blockade current flowing through the nanopore remains a major challenge for realizing the nanopore protein sequencing. Using the results of all-atom molecular dynamics simulations, here we compare nanopore sequencing of DNA with nanopore sequencing of proteins. We then delineate the factors affecting the blockade current modulation by the peptide sequence, showing that the current can be determined by (i) the steric footprint of an amino acid, (ii) its interactions with the pore wall, (iii) the local stretching of a polypeptide chain, and (iv) the local enhancement of the ion concentration at the nanopore constriction. We conclude with a brief discussion of the prospects for purely computational prediction of the blockade currents.

2.
ACS Nano ; 17(17): 16369-16395, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37490313

RESUMO

Biotechnological innovations have vastly improved the capacity to perform large-scale protein studies, while the methods we have for identifying and quantifying individual proteins are still inadequate to perform protein sequencing at the single-molecule level. Nanopore-inspired systems devoted to understanding how single molecules behave have been extensively developed for applications in genome sequencing. These nanopore systems are emerging as prominent tools for protein identification, detection, and analysis, suggesting realistic prospects for novel protein sequencing. This review summarizes recent advances in biological nanopore sensors toward protein sequencing, from the identification of individual amino acids to the controlled translocation of peptides and proteins, with attention focused on device and algorithm development and the delineation of molecular mechanisms with the aid of simulations. Specifically, the review aims to offer recommendations for the advancement of nanopore-based protein sequencing from an engineering perspective, highlighting the need for collaborative efforts across multiple disciplines. These efforts should include chemical conjugation, protein engineering, molecular simulation, machine-learning-assisted identification, and electronic device fabrication to enable practical implementation in real-world scenarios.


Assuntos
Nanoporos , Peptídeos , Sequência de Aminoácidos , Peptídeos/química , Proteínas , Sequência de Bases , Aminoácidos/química
3.
J Chem Theory Comput ; 19(12): 3721-3740, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37134270

RESUMO

Proteins containing intrinsically disordered regions are integral parts of the cellular signaling pathways and common components of biological condensates. Point mutations in the protein sequence, genetic at birth or acquired through aging, can alter the properties of the condensates, marking the onset of neurodegenerative diseases such as ALS and dementia. While the all-atom molecular dynamics method can, in principle, elucidate the conformational changes that arise from point mutations, the applications of this method to protein condensate systems is conditioned upon the availability of molecular force fields that can accurately describe both structured and disordered regions of such proteins. Using the special-purpose Anton 2 supercomputer, we benchmarked the efficacy of nine presently available molecular force fields in describing the structure and dynamics of a Fused in sarcoma (FUS) protein. Five-microsecond simulations of the full-length FUS protein characterized the effect of the force field on the global conformation of the protein, self-interactions among its side chains, solvent accessible surface area, and the diffusion constant. Using the results of dynamic light scattering as a benchmark for the FUS radius of gyration, we identified several force fields that produced FUS conformations within the experimental range. Next, we used these force fields to perform ten-microsecond simulations of two structured RNA binding domains of FUS bound to their respective RNA targets, finding the choice of the force field to affect stability of the RNA-FUS complex. Taken together, our data suggest that a combination of protein and RNA force fields sharing a common four-point water model provides an optimal description of proteins containing both disordered and structured regions and RNA-protein interactions. To make simulations of such systems available beyond the Anton 2 machines, we describe and validate implementation of the best performing force fields in a publicly available molecular dynamics program NAMD. Our NAMD implementation enables simulations of large (tens of millions of atoms) biological condensate systems and makes such simulations accessible to a broader scientific community.


Assuntos
Benchmarking , Simulação de Dinâmica Molecular , Humanos , Recém-Nascido , Proteínas , Conformação Molecular , RNA/química , Conformação Proteica
4.
bioRxiv ; 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36798393

RESUMO

Proteins containing intrinsically disordered regions are integral components of the cellular signaling pathways and common components of biological condensates. Point mutations in the protein sequence, genetic at birth or acquired through aging, can alter the properties of the condensates, marking the onset of neurodegenerative diseases such as ALS and dementia. While all-atom molecular dynamics method can, in principle, elucidate the conformational changes responsible for the aging of the condensate, the applications of this method to protein condensate systems is conditioned by the availability of molecular force fields that can accurately describe both structured and disordered regions of such proteins. Using the special-purpose Anton 2 supercomputer, we benchmarked the efficacy of nine presently available molecular force fields in describing the structure and dynamics of a Fused in sarcoma (FUS) protein. Five-microsecond simulations of the full-length FUS protein characterized the effect of the force field on the global conformation of the protein, self-interactions among its side chains, solvent accessible surface area and the diffusion constant. Using the results of dynamic light scattering as a benchmark for the FUS radius of gyration, we identified several force field that produced FUS conformations within the experimental range. Next, we used these force fields to perform ten-microsecond simulations of two structured RNA binding domains of FUS bound to their respective RNA targets, finding the choice of the force field to affect stability of the RNA-FUS complex. Taken together, our data suggest that a combination of protein and RNA force fields sharing a common four-point water model provides an optimal description of proteins containing both disordered and structured regions and RNA-protein interactions. To make simulations of such systems available beyond the Anton 2 machines, we describe and validate implementation of the best performing force fields in a publicly available molecular dynamics program NAMD. Our NAMD implementation enables simulations of large (tens of millions of atoms) biological condensate systems and makes such simulations accessible to a broader scientific community.

5.
Nat Biotechnol ; 41(8): 1130-1139, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36624148

RESUMO

The electrical current blockade of a peptide or protein threading through a nanopore can be used as a fingerprint of the molecule in biosensor applications. However, threading of full-length proteins has only been achieved using enzymatic unfolding and translocation. Here we describe an enzyme-free approach for unidirectional, slow transport of full-length proteins through nanopores. We show that the combination of a chemically resistant biological nanopore, α-hemolysin (narrowest part is ~1.4 nm in diameter), and a high concentration guanidinium chloride buffer enables unidirectional, single-file protein transport propelled by an electroosmotic effect. We show that the mean protein translocation velocity depends linearly on the applied voltage and translocation times depend linearly on length, resembling the translocation dynamics of ssDNA. Using a supervised machine-learning classifier, we demonstrate that single-translocation events contain sufficient information to distinguish their threading orientation and identity with accuracies larger than 90%. Capture rates of protein are increased substantially when either a genetically encoded charged peptide tail or a DNA tag is added to a protein.


Assuntos
Nanoporos , Peptídeos , DNA de Cadeia Simples , Transporte Proteico , Proteínas Hemolisinas/química
6.
J Am Chem Soc ; 144(35): 16060-16068, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36007197

RESUMO

The chemical nature and precise position of posttranslational modifications (PTMs) in proteins or peptides are crucial for various severe diseases, such as cancer. State-of-the-art PTM diagnosis is based on elaborate and costly mass-spectrometry or immunoassay-based approaches, which are limited in selectivity and specificity. Here, we demonstrate the use of a protein nanopore to differentiate peptides─derived from human histone H4 protein─of identical mass according to the positions of acetylated and methylated lysine residues. Unlike sequencing by stepwise threading, our method detects PTMs and their positions by sensing the shape of a fully entrapped peptide, thus eliminating the need for controlled translocation. Molecular dynamics simulations show that the sensitivity to molecular shape derives from a highly nonuniform electric field along the pore. This molecular shape-sensing principle offers a path to versatile, label-free, and high-throughput characterizations of protein isoforms.


Assuntos
Nanoporos , Histonas/química , Humanos , Lisina/metabolismo , Espectrometria de Massas/métodos , Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional
7.
Science ; 374(6574): 1509-1513, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34735217

RESUMO

A proteomics tool capable of identifying single proteins would be important for cell biology research and applications. Here, we demonstrate a nanopore-based single-molecule peptide reader sensitive to single­amino acid substitutions within individual peptides. A DNA-peptide conjugate was pulled through the biological nanopore MspA by the DNA helicase Hel308. Reading the ion current signal through the nanopore enabled discrimination of single­amino acid substitutions in single reads. Molecular dynamics simulations showed these signals to result from size exclusion and pore binding. We also demonstrate the capability to "rewind" peptide reads, obtaining numerous independent reads of the same molecule, yielding an error rate of <10−6 in single amino acid variant identification. These proof-of-concept experiments constitute a promising basis for the development of a single-molecule protein fingerprinting and analysis technology.


Assuntos
Substituição de Aminoácidos , Aminoácidos/química , Nanoporos , Peptídeos/química , Proteômica/métodos , Análise de Sequência de Proteína , DNA Helicases , Simulação de Dinâmica Molecular
8.
Nanoscale ; 13(37): 15552-15559, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34596187

RESUMO

Dynamic DNA origami nanostructures that respond to external stimuli are promising platforms for cargo delivery and nanoscale sensing. However, the low stability of such nanostructures under physiological conditions presents a major obstacle for their use in biomedical applications. This article describes a stable tetrahedral DNA nanorobot (TDN) programmed to undergo a controlled conformational change in response to epithelial cell adhesion molecule (EpCAM), a molecular biomarker specifically expressed on the circulating tumor cells. Multiresolution molecular dynamics simulations verified the overall stability of the folded TDN design and characterized local distortions in the folded structure. Atomic force microscopy and gel electrophoresis results showed that tetragonal structures are more stable than unfolded DNA origami sheets. Live cell experiments demonstrated the low cytotoxicity and target specificity of TDN. In summary, the proposed TDN can not only effectively resist nuclease catalysis but also has the potential to monitor EpCAM-positive cells precisely.


Assuntos
DNA , Nanoestruturas , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico
9.
ACS Nano ; 15(6): 9600-9613, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34060809

RESUMO

The detection of analytes and the sequencing of DNA using biological nanopores have seen major advances over recent years. The analysis of proteins and peptides with nanopores, however, is complicated by the complex physicochemical structure of polypeptides and the lack of understanding of the mechanism of capture and recognition of polypeptides by nanopores. In this work, we show that introducing aromatic amino acids at precise positions within the lumen of α-helical fragaceatoxin C (FraC) nanopores increased the capture frequency of peptides and largely improved the discrimination among peptides of similar size. Molecular dynamics simulations determined the sensing region of the nanopore, elucidated the microscopic mechanism enabling accurate characterization of the peptides via ionic current blockades in FraC, and characterized the effect of the pore modification on peptide discrimination. This work provides insights to improve the recognition and to augment the capture of peptides by nanopores, which is important for developing a real-time and single-molecule size analyzer for peptide recognition and identification.


Assuntos
Venenos de Cnidários , Nanoporos , Interações Hidrofóbicas e Hidrofílicas , Peptídeos
10.
J Phys Chem Lett ; 11(12): 4923-4929, 2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32426986

RESUMO

Recent advances in microscopy of living cells have established membraneless organelles as critical elements of diverse biological processes. The body of experimental work suggests that formation of such organelles is driven by liquid-liquid phase separation, a physical process that has been studied extensively for both simple liquids and mixtures of polymers. Here, we combine molecular dynamics simulations with polymer theory to show that the thermodynamic behavior of one particular biomolecular condensate-fused in sarcoma (FUS)-can be quantitatively accounted for at the level of the chain collapse theory. First, we show that a particle-based molecular dynamics model can reproduce known phase separation properties of a FUS condensate, including its critical concentration and susceptibility to mutations. Next, we obtain a polymer physics representation of a FUS condensate by examining the behavior of a single FUS protein as a function of temperature. We use the chain collapse theory to determine the thermodynamic properties of the condensate and to characterize changes in the single-chain conformation at the onset of phase separation. Altogether, our findings suggest that the phase behavior of FUS condensates can be explained by the properties of individual FUS proteins and that the change in the FUS conformation is the main force driving for the phase separation.


Assuntos
Transição de Fase , Polímeros/química , Proteína FUS de Ligação a RNA/química , Grânulos Citoplasmáticos/química , Humanos , Modelos Químicos , Simulação de Dinâmica Molecular , Termodinâmica
11.
Nat Nanotechnol ; 15(1): 73-79, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31844288

RESUMO

Artificial water channels are synthetic molecules that aim to mimic the structural and functional features of biological water channels (aquaporins). Here we report on a cluster-forming organic nanoarchitecture, peptide-appended hybrid[4]arene (PAH[4]), as a new class of artificial water channels. Fluorescence experiments and simulations demonstrated that PAH[4]s can form, through lateral diffusion, clusters in lipid membranes that provide synergistic membrane-spanning paths for a rapid and selective water permeation through water-wire networks. Quantitative transport studies revealed that PAH[4]s can transport >109 water molecules per second per molecule, which is comparable to aquaporin water channels. The performance of these channels exceeds the upper bound limit of current desalination membranes by a factor of ~104, as illustrated by the water/NaCl permeability-selectivity trade-off curve. PAH[4]'s unique properties of a high water/solute permselectivity via cooperative water-wire formation could usher in an alternative design paradigm for permeable membrane materials in separations, energy production and barrier applications.


Assuntos
Nanoestruturas/química , Peptídeos/química , Água/química , Aquaporinas/química , Calixarenos/química , Membranas Artificiais , Simulação de Dinâmica Molecular , Permeabilidade , Fenóis/química
12.
Nat Biotechnol ; 38(2): 176-181, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31844293

RESUMO

Efforts to sequence single protein molecules in nanopores1-5 have been hampered by the lack of techniques with sufficient sensitivity to discern the subtle molecular differences among all twenty amino acids. Here we report ionic current detection of all twenty proteinogenic amino acids in an aerolysin nanopore with the help of a short polycationic carrier. Application of molecular dynamics simulations revealed that the aerolysin nanopore has a built-in single-molecule trap that fully confines a polycationic carrier-bound amino acid inside the sensing region of the aerolysin. This structural feature means that each amino acid spends sufficient time in the pore for sensitive measurement of the excluded volume of the amino acid. We show that distinct current blockades in wild-type aerolysin can be used to identify 13 of the 20 natural amino acids. Furthermore, we show that chemical modifications, instrumentation advances and nanopore engineering offer a route toward identification of the remaining seven amino acids. These findings may pave the way to nanopore protein sequencing.


Assuntos
Aminoácidos/química , Toxinas Bacterianas/química , Eletricidade , Nanoporos , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas/química , Simulação de Dinâmica Molecular , Peptídeos/química
13.
Cell ; 179(5): 1098-1111.e23, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31730852

RESUMO

We report a 100-million atom-scale model of an entire cell organelle, a photosynthetic chromatophore vesicle from a purple bacterium, that reveals the cascade of energy conversion steps culminating in the generation of ATP from sunlight. Molecular dynamics simulations of this vesicle elucidate how the integral membrane complexes influence local curvature to tune photoexcitation of pigments. Brownian dynamics of small molecules within the chromatophore probe the mechanisms of directional charge transport under various pH and salinity conditions. Reproducing phenotypic properties from atomistic details, a kinetic model evinces that low-light adaptations of the bacterium emerge as a spontaneous outcome of optimizing the balance between the chromatophore's structural integrity and robust energy conversion. Parallels are drawn with the more universal mitochondrial bioenergetic machinery, from whence molecular-scale insights into the mechanism of cellular aging are inferred. Together, our integrative method and spectroscopic experiments pave the way to first-principles modeling of whole living cells.


Assuntos
Células/metabolismo , Metabolismo Energético , Adaptação Fisiológica/efeitos da radiação , Trifosfato de Adenosina/metabolismo , Benzoquinonas/metabolismo , Membrana Celular/metabolismo , Membrana Celular/efeitos da radiação , Células/efeitos da radiação , Cromatóforos/metabolismo , Citocromos c2/metabolismo , Difusão , Transporte de Elétrons/efeitos da radiação , Metabolismo Energético/efeitos da radiação , Meio Ambiente , Ligação de Hidrogênio , Cinética , Luz , Simulação de Dinâmica Molecular , Fenótipo , Proteínas/metabolismo , Rhodobacter sphaeroides/fisiologia , Rhodobacter sphaeroides/efeitos da radiação , Eletricidade Estática , Estresse Fisiológico/efeitos da radiação , Temperatura
14.
ACS Nano ; 13(2): 2398-2409, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30715850

RESUMO

Ion channels form the basis of information processing in living cells by facilitating the exchange of electrical signals across and along cellular membranes. Applying the same principles to man-made systems requires the development of synthetic ion channels that can alter their conductance in response to a variety of external manipulations. By combining single-molecule electrical recordings with all-atom molecular dynamics simulations, we here demonstrate a hybrid nanopore system that allows for both a stepwise change of its conductance and a nonlinear current-voltage dependence. The conductance modulation is realized by using a short flexible peptide gate that carries opposite electric charge at its ends. We show that a constant transmembrane bias can position (and, in a later stage, remove) the peptide gate right at the most-sensitive sensing region of a biological nanopore FraC, thus partially blocking its channel and producing a stepwise change in the conductance. Increasing or decreasing the bias while having the peptide gate trapped in the pore stretches or compresses the peptide within the nanopore, thus modulating its conductance in a nonlinear but reproducible manner. We envision a range of applications of this removable-gate nanopore system, e.g. from an element of biological computing circuits to a test bed for probing the elasticity of intrinsically disordered proteins.


Assuntos
Ativação do Canal Iônico , Nanoporos , Peptídeos/química , Condutividade Elétrica , Fenômenos Mecânicos , Simulação de Dinâmica Molecular
15.
Nat Commun ; 9(1): 2426, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29930243

RESUMO

Mimicking enzyme function and increasing performance of naturally evolved proteins is one of the most challenging and intriguing aims of nanoscience. Here, we employ DNA nanotechnology to design a synthetic enzyme that substantially outperforms its biological archetypes. Consisting of only eight strands, our DNA nanostructure spontaneously inserts into biological membranes by forming a toroidal pore that connects the membrane's inner and outer leaflets. The membrane insertion catalyzes spontaneous transport of lipid molecules between the bilayer leaflets, rapidly equilibrating the lipid composition. Through a combination of microscopic simulations and fluorescence microscopy we find the lipid transport rate catalyzed by the DNA nanostructure exceeds 107 molecules per second, which is three orders of magnitude higher than the rate of lipid transport catalyzed by biological enzymes. Furthermore, we show that our DNA-based enzyme can control the composition of human cell membranes, which opens new avenues for applications of membrane-interacting DNA systems in medicine.


Assuntos
Membrana Celular/química , DNA/química , Metabolismo dos Lipídeos , Proteínas de Membrana/química , Nanotecnologia/métodos , Transporte Biológico , Linhagem Celular Tumoral , Humanos , Modelos Moleculares
16.
ACS Nano ; 11(12): 11931-11945, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29120602

RESUMO

Nanopore-based sensors for nucleic acid sequencing and single-molecule detection typically employ pore-forming membrane proteins with hydrophobic external surfaces, suitable for insertion into a lipid bilayer. In contrast, hydrophilic pore-containing molecules, such as DNA origami, have been shown to require chemical modification to favor insertion into a lipid environment. In this work, we describe a strategy for inserting polar proteins with an inner pore into lipid membranes, focusing here on a circular 12-subunit assembly of the thermophage G20c portal protein. X-ray crystallography, electron microscopy, molecular dynamics, and thermal/chaotrope denaturation experiments all find the G20c portal protein to have a highly stable structure, favorable for nanopore sensing applications. Porphyrin conjugation to a cysteine mutant in the protein facilitates the protein's insertion into lipid bilayers, allowing us to probe ion transport through the pore. Finally, we probed the portal interior size and shape using a series of cyclodextrins of varying sizes, revealing asymmetric transport that possibly originates from the portal's DNA-ratchet function.


Assuntos
Proteínas do Capsídeo/química , Bicamadas Lipídicas/química , Simulação de Acoplamento Molecular , Nanotecnologia , Porfirinas/química , Temperatura , Cristalografia por Raios X , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Estrutura Molecular , Nanoporos , Tamanho da Partícula , Propriedades de Superfície , Thermus thermophilus/química
17.
ACS Nano ; 11(2): 1204-1213, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28036167

RESUMO

The motion of polarizable particles in a nonuniform electric field (i.e., dielectrophoresis) has been extensively used for concentration, separation, sorting, and transport of biological particles from cancer cells and viruses to biomolecules such as DNAs and proteins. However, current approaches to dielectrophoretic manipulation are not sensitive enough to selectively target individual molecular species. Here, we describe the application of the dielectrophoretic principle for selective detection of DNA and RNA molecules using an engineered biological nanopore. The key element of our approach is a synthetic polycationic nanocarrier that selectively binds to the target biomolecules, dramatically increasing their dielectrophoretic response to the electric field gradient generated by the nanopore. The dielectrophoretic capture of the nanocarrier-target complexes is detected as a transient blockade of the nanopore ionic current, while any nontarget nucleic acids are repelled from the nanopore by electrophoresis and thus do not interfere with the signal produced by the target's capture. Strikingly, we show that even modestly charged nanocarriers can be used to capture DNA or RNA molecules of any length or secondary structure and simultaneously detect several molecular targets. Such selective, multiplex molecular detection technology would be highly desirable for real-time analysis of complex clinical samples.


Assuntos
DNA/análise , Nanoporos , RNA/análise , Biomarcadores/análise , Cátions/química , DNA/genética , Eletroforese , Simulação de Dinâmica Molecular , Polímeros/química , RNA/genética
18.
Proc Natl Acad Sci U S A ; 112(32): 9810-5, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26216964

RESUMO

Bioinspired artificial water channels aim to combine the high permeability and selectivity of biological aquaporin (AQP) water channels with chemical stability. Here, we carefully characterized a class of artificial water channels, peptide-appended pillar[5]arenes (PAPs). The average single-channel osmotic water permeability for PAPs is 1.0(± 0.3) × 10(-14) cm(3)/s or 3.5(± 1.0) × 10(8) water molecules per s, which is in the range of AQPs (3.4 ∼ 40.3 × 10(8) water molecules per s) and their current synthetic analogs, carbon nanotubes (CNTs, 9.0 × 10(8) water molecules per s). This permeability is an order of magnitude higher than first-generation artificial water channels (20 to ∼ 10(7) water molecules per s). Furthermore, within lipid bilayers, PAP channels can self-assemble into 2D arrays. Relevant to permeable membrane design, the pore density of PAP channel arrays (∼ 2.6 × 10(5) pores per µm(2)) is two orders of magnitude higher than that of CNT membranes (0.1 ∼ 2.5 × 10(3) pores per µm(2)). PAP channels thus combine the advantages of biological channels and CNTs and improve upon them through their relatively simple synthesis, chemical stability, and propensity to form arrays.


Assuntos
Canais Iônicos/química , Água/química , Aquaporinas/química , Íons , Modelos Moleculares , Simulação de Dinâmica Molecular , Nanotubos de Carbono , Peptídeos/química , Permeabilidade , Lipossomas Unilamelares/química
19.
Biophys J ; 96(12): 4853-65, 2009 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-19527644

RESUMO

A 52-residue membrane protein, phospholamban (PLN) is an inhibitor of an adenosine-5'-triphosphate-driven calcium pump, the Ca2+-ATPase. Although the inhibition of Ca2+-ATPase involves PLN monomers, in a lipid bilayer membrane, PLN monomers form stable pentamers of unknown biological function. The recent NMR structure of a PLN pentamer depicts cytoplasmic helices extending normal to the bilayer in what is known as the bellflower conformation. The structure shows transmembrane helices forming a hydrophobic pore 4 A in diameter, which is reminiscent of earlier reports of possible ion conductance through PLN pentamers. However, recent FRET measurements suggested an alternative structure for the PLN pentamer, known as the pinwheel model, which features a narrower transmembrane pore and cytoplasmic helices that lie against the bilayer. Here, we report on structural dynamics and conductance properties of the PLN pentamers from all-atom (AA) and coarse-grained (CG) molecular dynamics simulations. Our AA simulations of the bellflower model demonstrate that in a lipid bilayer membrane or a detergent micelle, the cytoplasmic helices undergo large structural fluctuations, whereas the transmembrane pore shrinks and becomes asymmetric. Similar asymmetry of the transmembrane region was observed in the AA simulations of the pinwheel model; the cytoplasmic helices remained in contact with the bilayer. Using the CG approach, structural dynamics of both models were investigated on a microsecond timescale. The cytoplasmic helices of the CG bellflower model were observed to fall against the bilayer, whereas in the CG pinwheel model the conformation of the cytoplasmic helices remained stable. Using steered molecular dynamics simulations, we investigated the feasibility of ion conductance through the pore of the bellflower model. The resulting approximate potentials of mean force indicate that the PLN pentamer is unlikely to function as an ion channel.


Assuntos
Proteínas de Ligação ao Cálcio/química , Íons/química , Multimerização Proteica , Estrutura Quaternária de Proteína , Membrana Celular/química , Simulação por Computador , Citoplasma/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas , Micelas , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA