RESUMO
OBJECTIVE: This study evaluates various craniospinal irradiation (CSI) techniques used in Turkish centers to understand their advantages, disadvantages and overall effectiveness, with a focus on enhancing dose distribution. METHODS: Anonymized CT scans of adult and pediatric patients, alongside target volumes and organ-at-risk (OAR) structures, were shared with 25 local radiotherapy centers. They were tasked to develop optimal treatment plans delivering 36 Gy in 20 fractions with 95% PTV coverage, while minimizing OAR exposure. The same CT data was sent to a US proton therapy center for comparison. Various planning systems and treatment techniques (3D conformal RT, IMRT, VMAT, tomotherapy) were utilized. Elekta Proknow software was used to analyze parameters, assess dose distributions, mean doses, conformity index (CI), and homogeneity index (HI) for both target volumes and OARs. Comparisons were made against proton therapy. RESULTS: All techniques consistently achieved excellent PTV coverage (V95 > 98%) for both adult and pediatric patients. Tomotherapy closely approached ideal Dmean doses for all PTVs, while 3D-CRT had higher Dmean for PTV_brain. Tomotherapy excelled in CI and HI for PTVs. IMRT resulted in lower pediatric heart, kidney, parotid, and eye doses, while 3D-CRT achieved the lowest adult lung doses. Tomotherapy approached proton therapy doses for adult kidneys and thyroid, while IMRT excelled for adult heart, kidney, parotid, esophagus, and eyes. CONCLUSION: Modern radiotherapy techniques offer improved target coverage and OAR protection. However, 3D techniques are continued to be used for CSI. Notably, proton therapy stands out as the most efficient approach, closely followed by Tomotherapy in terms of achieving superior target coverage and OAR protection.
Assuntos
Radiação Cranioespinal , Radioterapia Conformacional , Radioterapia de Intensidade Modulada , Adulto , Humanos , Criança , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radiação Cranioespinal/métodos , Turquia , Radioterapia Conformacional/métodos , Radioterapia de Intensidade Modulada/métodosRESUMO
BACKGROUND: Our purpose was to ensure that the dose constraints of the organs at risk (OARs) were not exceeded while increasing the prescription dose to the planning target volume (PTV) from 45 to 50.4 Gray (Gy) with the dynamic intensity-modulated radiotherapy (IMRT) technique. While trying for this purpose, a new dynamic IMRT technique named 90° angled collimated dynamic IMRT (A-IMRT) planning was developed by us. METHODS: This study was based on the computed tomography data sets of 20 patients with postoperatively diagnosed International Federation of Gynecology and Obstetrics stage 2 endometrial carcinoma. For each patient, conventional dynamic IMRT (C-IMRT, collimator angle of 0° at all gantry angles), A-IMRT (collimator angle of 90° at gantry angles of 110°, 180°, 215°, and 285°), and volumetric modulated arc therapy (VMAT) were planned. Planning techniques were compared with parameters used to evaluate PTV and OARs via dose-volume-histogram analysis using the paired two-tailed Wilcoxon's signed-rank test; pâ <â 0.05 was considered indicative of statistical significance. RESULTS: All plans achieved adequate dose coverage for PTV. Although the technique with the lowest mean conformality index was A-IMRT (0.76 ± 0.05) compared to both C-IMRT (0.79 ± 0.04, p = 0.000) and VMAT (0.83 ± 0.03, p = 0.000), it protected the OARs especially the bladder (V45 = 32.84 ± 2.03 vs. 44.21 ± 6.67, p = 0.000), rectum (V30 = 56.18 ± 2.05 vs. 73.80 ± 4.75, p = 0.000) and both femoral heads (V30 for right = 12.19 ± 1.34 vs. 21.42 ± 4.03, p = 0.000 and V30 for left = 12.58 ± 1.48 vs. 21.35 ± 4.16, p = 0.000) better than C-IMRT. While the dose constraints of the bladder, rectum and bilateral femoral heads were not exceeded in any patient with A-IMRT or VMAT, they were exceeded in 19 (95%), 20 (100%) and 20 (100%) patients with C-IMRT, respectively. CONCLUSIONS: OARs are better protected when external beam radiotherapy is applied to the pelvis at a dose of 50.4 Gy by turning the collimator angle to 90° at some gantry angles with the dynamic IMRT technique in the absence of VMAT.