Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 14: 1134868, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234812

RESUMO

Recently, we reported that sperm induce cluster of differentiation 44 (CD44) expression and Toll-like receptor 2 (TLR2)-mediated inflammatory response in bovine uterus. In the present study, we hypothesized that the interaction between CD44 of bovine endometrial epithelial cells (BEECs) and hyaluronan (HA) affects sperm attachment and thereby enhancing TLR2-mediated inflammation. To test our hypothesis, at first, in-silico approaches were employed to define the binding affinity of HA for CD44 and TLR2. Further, an in-vitro experiment using the sperm-BEECs co-culture model was applied to investigate the effect of HA on sperm attachment and inflammatory response. Here, low molecular weight (LMW) HA at different concentrations (0, 0.1, 1, or 10 µg/mL) was incubated with BEECs for 2 h followed by the co-culture without- or with non-capacitated washed sperm (106/ml) for additional 3 h was performed. The present in-silico model clarified that CD44 is a high-affinity receptor for HA. Moreover, TLR2 interactions with HA oligomer (4- and 8-mers) target a different subdomain (h-bonds) compared to TLR2-agonist (PAM3) which targets a central hydrophobic pocket. However, the interaction of LMW HA (32-mers) with TLR2 revealed no stability of HA at any pocket of TLR2. Notably, the immunofluorescence analysis revealed the HA localization in both endometrial stroma and epithelia of ex-vivo endometrial explant. Moreover, ELISA showed significant levels of HA in BEECs culture media. Importantly, BEECs pretreatment with HA prior to sperm exposure increased the number of attached sperm to BEECs, and upregulated the transcriptional levels of pro-inflammatory genes (TNFA, IL-1B, IL-8, and PGES) in BEECs in response to sperm. However, BEECs treated with HA only (no sperm exposure) did not show any significant effect on the transcript abundance of pro-inflammatory genes when compared to the non-treated BEECs. Altogether, our findings strongly suggest a possible cross-talk between sperm and endometrial epithelial cells via HA and HA binding receptors (CD44 and TLR2) to induce a pro-inflammatory response in bovine uterus.


Assuntos
Ácido Hialurônico , Receptor 2 Toll-Like , Feminino , Animais , Bovinos , Ácido Hialurônico/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Células Epiteliais/metabolismo , Endométrio/metabolismo
2.
Front Immunol ; 14: 1158090, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180107

RESUMO

Toll-like receptor 2 (TLR2) signaling pathway is involved in the sperm-triggered uterine inflammatory response at insemination, but its precise mechanism at molecular-level remains unknown. According to the ligand specificity, TLR2 forms a heterodimer with TLR1 or TLR6 as an initial step to mediate intracellular signaling, leading to a specific type of immune response. Hence, the present study aimed to identify the active TLR2 heterodimer (TLR2/1 or TLR2/6) that is involved in sperm-uterine immune crosstalk in bovine using various models. First, in-vitro (bovine endometrial epithelial cells, BEECs) and ex-vivo (bovine uterine explant) models were employed to test different TLR2 dimerization pathways in endometrial epithelia after exposure to sperm or TLR2 agonists; PAM3 (TLR2/1 agonist), and PAM2 (TLR2/6 agonist). Additionally, in-silico approaches were performed to confirm the dimer stability using de novo protein structure prediction model for bovine TLRs. The in-vitro approach revealed that sperm triggered the mRNA and protein expression of TLR1 and TLR2 but not TLR6 in BEECs. Moreover, this model disclosed that activation of TLR2/6 heterodimer, triggers a much stronger inflammatory response than TLR2/1 and sperm in bovine uterine epithelia. In the ex-vivo model that mimics the intact uterine tissue at insemination, sperm also induced the protein expression of both TLR1 and TLR2, but not TLR6, in bovine endometrium, particularly in uterine glands. Importantly, PAM3 and sperm induced similar and low mRNA expression of pro-inflammatory cytokines and TNFA protein to a lesser extent than PAM2 in endometrial epithelia. This implied that sperm might trigger a weak inflammatory response via TLR2/TLR1 activation which is similar to that of PAM3. Additionally, the in-silico analyses showed that the existence of bridging ligands is essential for heterodimer stability in bovine TLR2 with either TLR1 or TLR6. Altogether, the present findings revealed that sperm utilize TLR2/1, but not TLR2/6, heterodimerization to trigger a weak physiological inflammatory response in the bovine uterus. This might be the way to remove excess dead sperm remaining in the uterine lumen without tissue damage for providing an ideal uterine environment for early embryo reception and implantation.


Assuntos
Receptor 1 Toll-Like , Receptor 2 Toll-Like , Feminino , Masculino , Animais , Bovinos , Receptor 2 Toll-Like/metabolismo , Receptor 1 Toll-Like/genética , Receptor 1 Toll-Like/metabolismo , Dimerização , Receptor 6 Toll-Like/metabolismo , Sêmen/metabolismo , Endométrio/metabolismo , Ligantes , Espermatozoides/metabolismo , RNA Mensageiro/metabolismo
3.
Reprod Toxicol ; 107: 81-89, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34864119

RESUMO

Zearalenone (ZEN)-contaminated diets induce detrimental effects on the bovine reproduction. Recently, we reported that active sperm induce pro-inflammatory responses in bovine endometrial epithelial cells (BEECs) in vitro. This study aimed to investigate the impact of presence of ZEN on the sperm-uterine crosstalk in vitro. BEECs monolayers were stimulated by ZEN (10, 100, and 1000 ng/mL) for 0, 3, 6, 12, or 24 h and gene expressions were analyzed by real-time PCR. Moreover, BEECs were pre-exposed to ZEN (10, 100, and 1000 ng/mL) for 24 h then, co-incubated with sperm for 6 h. Conditioned media (CM) from a sperm-BEECs co-culture, after pre-exposure to ZEN, were harvested and exploited to challenge either polymorphonuclear cells (PMNs) or sperm. Both PMNs phagocytic activity toward sperm and sperm motility parameters were then assessed. Results showed that ZEN alone induced pro-inflammatory responses in BEECs through the induction of mRNA expressions of pro-inflammatory cytokines (TNFA and IL1B) and PGES1 at different time points. Pre-exposure of BEECs to ZEN, amplified the sperm-triggered upregulation of pro-inflammatory cytokines (TNFA and IL1B) and chemokine IL8 mRNA abundance in BEECs. Sperm-BEECs conditioned media, primed by ZEN, stimulated the PMNs phagocytosis for sperm whereas suppressed sperm motility parameters. Taken together, these findings indicate that the presence of ZEN augments the pro-inflammatory cascade triggered by sperm in BEECs, provokes PMNs phagocytosis for sperm, and reduces sperm motility parameters. Such immunological reactions may create a hostile environment for sperm competence and survival in the bovine uterus, thus impair fertility.


Assuntos
Estrogênios não Esteroides/toxicidade , Inflamação , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Útero , Zearalenona/toxicidade , Animais , Bovinos , Células Cultivadas , Técnicas de Cocultura , Citocinas/genética , Células Epiteliais/efeitos dos fármacos , Feminino , Inflamação/genética , Masculino , Neutrófilos/fisiologia , Fagocitose , Espermatozoides/fisiologia , Útero/citologia
4.
Mol Reprod Dev ; 88(3): 201-210, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33559208

RESUMO

Growth hormone (GH) and insulin-like growth factor 1 (IGF1) are crucial for female reproductive functions. The cyclic regulation of the local GH/IGF1 axis in the oviduct and its involvement in oviductal contraction in cattle has not been investigated. Thus, the messenger RNA (mRNA) expression for GH receptor (GHR), IGF1, IGF1 receptor (IGF1R) in the whole oviducts, as well as in cultured bovine oviductal epithelial cells (BOECs) were evaluated. The GHR, IGF1, and IGF1R mRNA expression was significantly higher during postovulatory phase. The luteinizing hormone (LH), estradiol-17ß (E2), and LH + E2 treatments significantly increased GHR and IGF1 mRNA expression in cultured BOECs. Further, GH and combination of GH with LH and E2 upregulated IGF1 mRNA expression in the BOECs. Moreover, IGF1 + LH and combined IGF1 + LH + E2 treatments significantly increased prostaglandin synthesis cascade enzyme mRNA expression in the BOECs. An ex vivo microdialysis assay revealed that GH and IGF1 induced the release of oviductal contraction related prostaglandins, endothelin-1, and angiotensin II in follicular and postovulatory phases. Together, the findings strongly suggest that the presence of the active GH/IGF1 axis during the peri-ovulatory period, regulating the local system for the release of oviductal contraction related substances, which may provide the optimal oviductal environment for gametes and early embryo.


Assuntos
Células Epiteliais/metabolismo , Hormônio do Crescimento/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Oviductos/metabolismo , Ovulação/fisiologia , Animais , Bovinos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Estradiol/farmacologia , Feminino , Fator de Crescimento Insulin-Like I/genética , Hormônio Luteinizante/farmacologia , Oviductos/citologia , Oviductos/efeitos dos fármacos , Prostaglandinas/metabolismo , Receptores da Somatotropina/genética , Receptores da Somatotropina/metabolismo
5.
Reprod Fertil Dev ; 34(2): 139-148, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35231265

RESUMO

During the passage through the female reproductive tract, sperm interact with various compartments and their immune systems. The immune system that protects the female against pathogens also could destroy sperm or prevent them from reaching the site of fertilisation. In particular, the uterine innate immune response is crucial from the perspectives of both the sperm and the uterus. Following insemination, sperm immediately start to trigger inflammation in the uterus by entering uterine glands and activating an innate immune response. In cattle, the activation occurs mainly via TLR2 signalling, if not the only one, between sperm and the uterine epithelium lining the glands. This acute immune response is manifested as the upregulation of mRNA expression of IL8, TNFA, IL1B , and PGES . As a consequence, many sperm are trapped by polymorphonuclear neutrophils, the first and major component of innate immunity. The sperm-induced uterine innate immune responses apparently serve to clear the uterus of excess sperm and, importantly, prepare the endometrium for implantation. Pathophysiological conditions in the uterus seriously disrupt this phenomenon, and thus could directly decrease fertility.


Assuntos
Espermatozoides , Receptor 2 Toll-Like , Animais , Bovinos , Endométrio/metabolismo , Feminino , Sistema Imunitário , Imunidade Inata , Masculino , Espermatozoides/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Útero
6.
Mol Reprod Dev ; 87(10): 1059-1069, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32914493

RESUMO

We previously reported that sperm binding to cultured bovine oviduct epithelial cells induces an anti-inflammatory immune response. Now we have developed a differentiated explant model to focus on the oviductal ampulla, where fertilization occurs, and to study the effect of sperm capacitation on the immune response. We used heparin to stimulate bovine sperm capacitation. Fluorescence imaging showed that 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolyl-carbocyanine iodide-labeled sperm pretreated with (Hep(+) ) or without (Hep(-) ) heparin rapidly attached to the explant ciliated epithelium in similar numbers. However, only Hep(+) sperm upregulated explant messenger RNA (mRNA) transcription of TLR2, IL8, TGFB1, and PGES, without changes in TNFA and IL-10 expression, while Hep(-) sperm only upregulated PGES. The responses were primarily anti-inflammatory, with a greater response produced by Hep(+) sperm, which also produced a substantial increase in TLR2 protein expression in the epithelium. The addition of TLR1/2 (toll-like receptor 1/2) antagonist to the Hep(+) and (Hep(-) ) sperm-explant coincubations reduced sperm attachment to the epithelium and inhibited TLR2 protein expression and some of the Hep(+) sperm-induced mRNA transcription. Our observations suggest that the ampullar epithelium immunologically reacts more strongly to sperm that have undergone heparin stimulation of capacitation. This anti-inflammatory response could serve to protect capacitated sperm as they approach the oocyte in the ampulla.


Assuntos
Comunicação Celular/imunologia , Tubas Uterinas , Espermatozoides/metabolismo , Receptor 2 Toll-Like/fisiologia , Animais , Bovinos , Comunicação Celular/genética , Células Cultivadas , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Tubas Uterinas/imunologia , Tubas Uterinas/metabolismo , Feminino , Imunidade/fisiologia , Masculino , Capacitação Espermática/fisiologia , Espermatozoides/imunologia
7.
Front Immunol ; 11: 619408, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33643300

RESUMO

In mammals, the uterine mucosal immune system simultaneously recognizes and reacts to most bacteria as well as allogenic sperm mainly through the Toll-like receptors (TLR)2/4 signaling pathway. Here, we characterized the impact of pathogen-derived TLR2/4 ligands (peptidoglycan (PGN)/lipopolysaccharide (LPS)) on the immune crosstalk of sperm with the bovine endometrial epithelium. The real-time PCR analysis showed that the presence of low levels of PGN, but not LPS, blocked the sperm-induced inflammatory responses in bovine endometrial epithelial cells (BEECs) in vitro. Immunoblotting analysis revealed that PGN prevented the sperm-induced phosphorylation of JNK in BEECs. Activation or blockade of the TLR2 system in the endometrial epithelium verified that TLR2 signaling acts as a commonly-shared pathway for PGN and sperm recognition. The impairment of endometrial sperm recognition, induced by PGN, subsequently inhibited sperm phagocytosis by polymorphonuclear neutrophils (PMNs). Moreover, using an ex vivo endometrial explant that more closely resembles those in vivo conditions, showed that sperm provoked a mild and reversible endometrial tissue injury and triggered PMN recruitment into uterine glands, while PGN inhibited these events. Of note, PGN markedly increased the sperm attachment to uterine glands, and relatively so in the surface epithelium. However, addition of the anti-CD44 antibody into a PGN-sperm-explant co-culture completely blocked sperm attachment into glands and surface epithelia, indicating that the CD44 adhesion molecule is involved in the PGN-triggered sperm attachment to the endometrial epithelium. Together, these findings demonstrate that, the presence of PGN residues disrupts sperm immune recognition and prevents the physiological inflammation induced by sperm in the endometrial epithelium via the MyD88-dependent pathway of TLR2 signaling, possibly leading to impairment of uterine clearance and subsequent embryo receptivity.


Assuntos
Endométrio/imunologia , Privilégio Imunológico/imunologia , Peptidoglicano/imunologia , Espermatozoides/imunologia , Receptor 2 Toll-Like/imunologia , Animais , Bovinos , Feminino , Imunidade nas Mucosas/imunologia , Lipopolissacarídeos/imunologia , Masculino , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA