Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 35(1): 108935, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33826891

RESUMO

Type 2 diabetes (T2D) increases the risk for diabetic cardiomyopathy and is characterized by diastolic dysfunction. Myocardial forkhead box O1 (FoxO1) activity is enhanced in T2D and upregulates pyruvate dehydrogenase (PDH) kinase 4 expression, which inhibits PDH activity, the rate-limiting enzyme of glucose oxidation. Because low glucose oxidation promotes cardiac inefficiency, we hypothesize that FoxO1 inhibition mitigates diabetic cardiomyopathy by stimulating PDH activity. Tissue Doppler echocardiography demonstrates improved diastolic function, whereas myocardial PDH activity is increased in cardiac-specific FoxO1-deficient mice subjected to experimental T2D. Pharmacological inhibition of FoxO1 with AS1842856 increases glucose oxidation rates in isolated hearts from diabetic C57BL/6J mice while improving diastolic function. However, AS1842856 treatment fails to improve diastolic function in diabetic mice with a cardiac-specific FoxO1 or PDH deficiency. Our work defines a fundamental mechanism by which FoxO1 inhibition improves diastolic dysfunction, suggesting that it may be an approach to alleviate diabetic cardiomyopathy.


Assuntos
Diabetes Mellitus Tipo 2/fisiopatologia , Diástole/fisiologia , Proteína Forkhead Box O1/metabolismo , Miocárdio/enzimologia , Complexo Piruvato Desidrogenase/metabolismo , Animais , Diabetes Mellitus Experimental/fisiopatologia , Cardiomiopatias Diabéticas/fisiopatologia , Fibrose , Proteína Forkhead Box O1/antagonistas & inibidores , Proteína Forkhead Box O1/deficiência , Glucose/metabolismo , Homeostase , Lipídeos/toxicidade , Masculino , Camundongos Endogâmicos C57BL
2.
Circ Heart Fail ; 13(6): e006573, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32493060

RESUMO

BACKGROUND: Previous studies have shown beneficial effects of acute infusion of the primary ketone body, ß-hydroxybutyrate, in heart failure (HF). However, whether chronic elevations in circulating ketones are beneficial remains unknown. METHODS: To chronically elevate circulating ketones in mice, we deleted the expression of the ketolytic, rate-limiting-enzyme, SCOT (succinyl-CoA:3-ketoacid-CoA transferase 1; encoded by Oxct1), in skeletal muscle. Tamoxifen-inducible skeletal muscle-specific Oxct1Muscle-/- knockout (n=32) mice and littermate controls (wild type; WT; n=35) were subjected to transverse aortic constriction (TAC) surgery to induce HF. RESULTS: Deletion of SCOT in skeletal, but not cardiac muscle resulted in elevated concentrations of fasted circulating ß-hydroxybutyrate in knockout mice compared with WT mice (P=0.030). Five weeks following TAC, WT mice progressed to HF, whereas knockout mice with elevated fasting circulating ketones were largely protected from the TAC-induced effects observed in WT mice (ejection fraction, P=0.011; mitral E/A, P=0.012). Furthermore, knockout mice with TAC had attenuated expression of markers of sterile inflammation and macrophage infiltration, which were otherwise elevated in WT mice subjected to TAC. Lastly, addition of ß-hydroxybutyrate to isolated hearts was associated with reduced NLRP3 (nucleotide-binding domain-like receptor protein 3)-inflammasome activation, which has been previously shown to play a role in contributing to HF-induced cardiac inflammation. CONCLUSIONS: These data show that chronic elevation of circulating ketones protects against the development of HF that is associated with the ability of ß-hydroxybutyrate to directly reduce inflammation. These beneficial effects of ketones were associated with reduced cardiac NLRP3 inflammasome activation, suggesting that ketones may modulate cardiac inflammation via this mechanism.


Assuntos
Ácido 3-Hidroxibutírico/sangue , Coenzima A-Transferases/deficiência , Insuficiência Cardíaca/prevenção & controle , Miocardite/prevenção & controle , Miocárdio/enzimologia , Animais , Coenzima A-Transferases/genética , Modelos Animais de Doenças , Fibrose , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/fisiopatologia , Hipertrofia Ventricular Esquerda/sangue , Hipertrofia Ventricular Esquerda/fisiopatologia , Hipertrofia Ventricular Esquerda/prevenção & controle , Inflamassomos/metabolismo , Preparação de Coração Isolado , Masculino , Camundongos Knockout , Miocardite/sangue , Miocardite/enzimologia , Miocardite/fisiopatologia , Miocárdio/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Regulação para Cima , Disfunção Ventricular Esquerda/sangue , Disfunção Ventricular Esquerda/fisiopatologia , Disfunção Ventricular Esquerda/prevenção & controle , Função Ventricular Esquerda , Remodelação Ventricular
3.
Cardiovasc Diabetol ; 18(1): 86, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31277657

RESUMO

BACKGROUND: Branched chain amino acids (BCAA) can impair insulin signaling, and cardiac insulin resistance can occur in the failing heart. We, therefore, determined if cardiac BCAA accumulation occurs in patients with dilated cardiomyopathy (DCM), due to an impaired catabolism of BCAA, and if stimulating cardiac BCAA oxidation can improve cardiac function in mice with heart failure. METHOD: For human cohorts of DCM and control, both male and female patients of ages between 22 and 66 years were recruited with informed consent from University of Alberta hospital. Left ventricular biopsies were obtained at the time of transplantation. Control biopsies were obtained from non-transplanted donor hearts without heart disease history. To determine if stimulating BCAA catabolism could lessen the severity of heart failure, C57BL/6J mice subjected to a transverse aortic constriction (TAC) were treated between 1 to 4-week post-surgery with either vehicle or a stimulator of BCAA oxidation (BT2, 40 mg/kg/day). RESULT: Echocardiographic data showed a reduction in ejection fraction (54.3 ± 2.3 to 22.3 ± 2.2%) and an enhanced formation of cardiac fibrosis in DCM patients when compared to the control patients. Cardiac BCAA levels were dramatically elevated in left ventricular samples of patients with DCM. Hearts from DCM patients showed a blunted insulin signalling pathway, as indicated by an increase in P-IRS1ser636/639 and its upstream modulator P-p70S6K, but a decrease in its downstream modulators P-AKT ser473 and in P-GSK3ß ser9. Cardiac BCAA oxidation in isolated working hearts was significantly enhanced by BT2, compared to vehicle, following either acute or chronic treatment. Treatment of TAC mice with BT2 significantly improved cardiac function in both sham and TAC mice (63.0 ± 1.8 and 56.9 ± 3.8% ejection fraction respectively). Furthermore, P-BCKDH and BCKDK expression was significantly decreased in the BT2 treated groups. CONCLUSION: We conclude that impaired cardiac BCAA catabolism and insulin signaling occur in human heart failure, while enhancing BCAA oxidation can improve cardiac function in the failing mouse heart.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Cardiomiopatia Dilatada/complicações , Metabolismo Energético/efeitos dos fármacos , Insuficiência Cardíaca/etiologia , Resistência à Insulina , Miocárdio/metabolismo , Adulto , Idoso , Animais , Ácidos Carboxílicos/farmacologia , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/fisiopatologia , Estudos de Casos e Controles , Modelos Animais de Doenças , Feminino , Fibrose , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Miocárdio/patologia , Oxirredução , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Adulto Jovem
4.
Cardiovasc Res ; 115(11): 1606-1616, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30778524

RESUMO

AIMS: The failing heart is energy-starved and inefficient due to perturbations in energy metabolism. Although ketone oxidation has been shown recently to increase in the failing heart, it remains unknown whether this improves cardiac energy production or efficiency. We therefore assessed cardiac metabolism in failing hearts and determined whether increasing ketone oxidation improves cardiac energy production and efficiency. METHODS AND RESULTS: C57BL/6J mice underwent sham or transverse aortic constriction (TAC) surgery to induce pressure overload hypertrophy over 4-weeks. Isolated working hearts from these mice were perfused with radiolabelled ß-hydroxybutyrate (ßOHB), glucose, or palmitate to assess cardiac metabolism. Ejection fraction decreased by 45% in TAC mice. Failing hearts had decreased glucose oxidation while palmitate oxidation remained unchanged, resulting in a 35% decrease in energy production. Increasing ßOHB levels from 0.2 to 0.6 mM increased ketone oxidation rates from 251 ± 24 to 834 ± 116 nmol·g dry wt-1 · min-1 in TAC hearts, rates which were significantly increased compared to sham hearts and occurred without decreasing glycolysis, glucose, or palmitate oxidation rates. Therefore, the contribution of ketones to energy production in TAC hearts increased to 18% and total energy production increased by 23%. Interestingly, glucose oxidation, in parallel with total ATP production, was also significantly upregulated in hearts upon increasing ßOHB levels. However, while overall energy production increased, cardiac efficiency was not improved. CONCLUSIONS: Increasing ketone oxidation rates in failing hearts increases overall energy production without compromising glucose or fatty acid metabolism, albeit without increasing cardiac efficiency.


Assuntos
Ácido 3-Hidroxibutírico/metabolismo , Metabolismo Energético , Insuficiência Cardíaca/metabolismo , Hipertrofia Ventricular Esquerda/metabolismo , Miocárdio/metabolismo , Função Ventricular Esquerda , Acetilação , Acil-CoA Desidrogenase de Cadeia Longa/genética , Acil-CoA Desidrogenase de Cadeia Longa/metabolismo , Adaptação Fisiológica , Animais , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Glucose/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Miocárdio/patologia , Oxirredução , Volume Sistólico
5.
Peptides ; 111: 26-32, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30227157

RESUMO

Glucagon-like peptide-1 receptor (GLP-1R) agonists augment insulin secretion and are thus used clinically to improve glycemia in subjects with type 2 diabetes (T2D). As recent data reveal marked improvements in cardiovascular outcomes in T2D subjects treated with the GLP-1R agonists liraglutide and semaglutide in the LEADER and SUSTAIN-6 clinical trials respectively, there is growing interest in delineating the mechanism(s) of action for GLP-1R agonist-induced cardioprotection. Of importance, negligible GLP-1R expression in ventricular cardiac myocytes suggests that cardiac-independent actions of GLP-1R agonists may account for the reduced death rates from cardiovascular causes in T2D subjects enrolled in the LEADER trial. Conversely, vascular smooth muscle cells (VSMCs) appear to express the canonical GLP-1R, and GLP-1/GLP-1R agonists exhibit a number of salutary actions on the vascular endothelium that could potentially contribute to GLP-1R agonists directly improving cardiovascular outcomes in subjects with T2D. We review herein the described actions of GLP-1/GLP-1R agonists on the vascular endothelium, which include antiproliferative actions on VSMCs and endothelial cells, reductions in oxidative stress, and increases in nitric oxide generation. GLP-1 also increases microvascular recruitment and microvascular blood flow. Taken together, such actions may explain the antihypertensive and/or antiatherosclerotic actions attributed to GLP-1/GLP-1R agonists in preclinical and clinical studies. Nonetheless, further mechanistic studies are still necessary to determine the relative importance of such actions in accounting for reductions in macrovascular cardiovascular disease in human subjects with T2D treated with GLP-1R agonists.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Animais , Ensaios Clínicos como Assunto , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Peptídeos Semelhantes ao Glucagon/uso terapêutico , Humanos , Liraglutida/uso terapêutico
6.
Am J Physiol Heart Circ Physiol ; 313(3): H479-H490, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28687587

RESUMO

Pyruvate dehydrogenase (PDH) is the rate-limiting enzyme for glucose oxidation and a critical regulator of metabolic flexibility during the fasting to feeding transition. PDH is regulated via both PDH kinases (PDHK) and PDH phosphatases, which phosphorylate/inactivate and dephosphorylate/activate PDH, respectively. Our goal was to determine whether the transcription factor forkhead box O1 (FoxO1) regulates PDH activity and glucose oxidation in the heart via increasing the expression of Pdk4, the gene encoding PDHK4. To address this question, we differentiated H9c2 myoblasts into cardiac myocytes and modulated FoxO1 activity, after which Pdk4/PDHK4 expression and PDH phosphorylation/activity were assessed. We assessed binding of FoxO1 to the Pdk4 promoter in cardiac myocytes in conjunction with measuring the role of FoxO1 on glucose oxidation in the isolated working heart. Both pharmacological (1 µM AS1842856) and genetic (siRNA mediated) inhibition of FoxO1 decreased Pdk4/PDHK4 expression and subsequent PDH phosphorylation in H9c2 cardiac myocytes, whereas 10 µM dexamethasone-induced Pdk4/PDHK4 expression was abolished via pretreatment with 1 µM AS1842856. Furthermore, transfection of H9c2 cardiac myocytes with a vector expressing FoxO1 increased luciferase activity driven by a Pdk4 promoter construct containing the FoxO1 DNA-binding element region, but not in a Pdk4 promoter construct lacking this region. Finally, AS1842856 treatment in fasted mice enhanced glucose oxidation rates during aerobic isolated working heart perfusions. Taken together, FoxO1 directly regulates Pdk4 transcription in the heart, thereby controlling PDH activity and subsequent glucose oxidation rates.NEW & NOTEWORTHY Although studies have shown an association between FoxO1 activity and pyruvate dehydrogenase kinase 4 expression, our study demonstrated that pyruvate dehydrogenase kinase 4 is a direct transcriptional target of FoxO1 (but not FoxO3/FoxO4) in the heart. Furthermore, we report here, for the first time, that FoxO1 inhibition increases glucose oxidation in the isolated working mouse heart.


Assuntos
Metabolismo Energético , Proteína Forkhead Box O1/metabolismo , Regulação Enzimológica da Expressão Gênica , Glucose/metabolismo , Miócitos Cardíacos/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Transcrição Gênica , Angiotensina II/toxicidade , Animais , Apoptose/efeitos dos fármacos , Sítios de Ligação , Linhagem Celular , Dexametasona/farmacologia , Metabolismo Energético/efeitos dos fármacos , Feminino , Proteína Forkhead Box O1/antagonistas & inibidores , Proteína Forkhead Box O1/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Cinética , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Oxirredução , Fosforilação , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil , Quinolonas/farmacologia , Interferência de RNA , Transdução de Sinais , Transcrição Gênica/efeitos dos fármacos , Transfecção
7.
Curr Pharm Des ; 22(16): 2403-10, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27139374

RESUMO

OBJECTIVES: -To examine the effect of nicotine (Ni) on bone socket healing treated with Ellagic acid (EA) after tooth extraction in rat. MATERIALS AND METHODS: Thirty-Two Sprague Dawley (SD) male rats were divided into four groups. The group 1 was administrated with distilled water intragastrically and injected sterile saline subcutaneously. The group 2 was administrated with EA orally and injected with sterile saline subcutaneously. The groups 3 & 4 were subcutaneously exposed to Ni for 4 weeks twice daily before tooth extraction procedure, and maintained Ni injection until the animals were sacrificed. After one month Ni exposure, the group 4 was fed with EA while continuing Ni injection. All the groups were anesthetized, and the upper left incisor was extracted. Four rats from each group were sacrificed on 14(th) and 28(th) days. Tumour necrosis factor alpha (TNFα), Interleukin-1 beta (IL-1ß) and Interleukin-6 (IL-6) were applied to assess in serum rat at 14th and 28(th) days. Superoxide dismutase (SOD) and Thiobarbituric acid reactive substances (TBRAS) levels were assessed to evaluate the antioxidant status and lipid peroxidation accordingly after tooth extraction in homogenized gingival maxilla tissue of rat at 14(th) and 28(th) days. The socket hard tissue was stained by eosin and hematoxylin (H&E); immunohistochemical technique was used to assess the healing process by Osteocalcin (OCN) and Alkaline Phosphatase (ALP) biomarkers. RESULTS: Ni-induced rats administered with EA compound (Group 4) dropped the elevated concentration of pro-inflammatory cytokines significantly when compared to Ni-induced rats (Group 3) (p<0.05). Ni-induced rats administrated with EA compound (Group 4) showed significant production of SOD and recession in TBRAS level when compared to Ni-induced rats (Group 3) (p<0.05). The immunohistochemistry analysis has revealed that OCN and ALP have presented stronger expression in Ni-induced rats treated with EA (Group 4), as against Ni-induced rats (Group 3). CONCLUSION: We have concluded that, Ni-induced rats, treated with EA have exerted positive effect on the trabecular bone formation after tooth extraction in nicotinic rats could be due to the antioxidant activity of EA which lead to upregulate of OCN and ALP proteins which are responsible for osteogenesis.


Assuntos
Fosfatase Alcalina/metabolismo , Osso e Ossos/efeitos dos fármacos , Ácido Elágico/farmacologia , Nicotina/farmacologia , Osteocalcina/metabolismo , Cicatrização/efeitos dos fármacos , Animais , Osso e Ossos/cirurgia , Masculino , Ratos , Extração Dentária
8.
Bosn J Basic Med Sci ; 15(2): 25-30, 2015 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-26042509

RESUMO

The wound-healing potential of Phaleria macrocarpa was evaluated by monitoring the levels of inflammatory mediators, collagen, and antioxidant enzymes. Experimentally, two-centimeter-wide full-thickness-deep skin excision wounds were created on the posterior neck area of the rats. The wounds were topically treated with gum acacia as a vehicle in the control group, intrasite gel in the reference group, and 100 and 200 mg/mL P. macrocarpa fruit extract in the treatment group. Granulation tissues were excised on the 15th day and were further processed for histological and biochemical analyzes. Wound healing was evaluated by measuring the contractions and protein contents of the wounds. Cellular redistribution and collagen deposition were assessed morphologically using Masson's trichrome stain. Superoxide dismutase (SOD) and catalase (CAT) activities, along with malondialdehyde (MDA) level were determined in skin tissue homogenates of the dermal wounds. Serum levels of transforming growth factor beta 1 (TGF-ß1) and tumor necrosis factor alpha (TNF-α) were evaluated in all the animals. A significant decrease in wound area was caused by a significant increase in TGF-ß1 level in the treated groups. Decrease in TNF-α level and increase in the collagen formation were also observed in the treated groups. Topical treatment with P. macrocarpa fruit extract increased the SOD and CAT activities in the healing wounds, thereby significantly increasing MDA level. The topical treatment with P. macrocarpa fruit extract showed significant healing effect on excision wounds and demonstrated an important role in the inflammation process by increasing antioxidant enzyme activities, thereby accelerating the wound healing process and reducing tissue injury.


Assuntos
Extratos Vegetais/farmacologia , Pele/efeitos dos fármacos , Pele/lesões , Thymelaeaceae , Cicatrização/efeitos dos fármacos , Animais , Catalase/metabolismo , Colágeno/metabolismo , Feminino , Malondialdeído/metabolismo , Modelos Animais , Ratos , Ratos Sprague-Dawley , Pele/metabolismo , Superóxido Dismutase/metabolismo , Fator de Crescimento Transformador beta1/sangue , Fator de Necrose Tumoral alfa/sangue , Cicatrização/fisiologia
9.
Biomed Res Int ; 2014: 792086, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24587992

RESUMO

Wound healing involves inflammation followed by granular tissue development and scar formation. In this study, synthetic chalcone 3-(2-Chlorophenyl)-1-phenyl-propenone (CPPP) was investigated for a potential role in enhancing wound healing and closure. Twenty-four male rats were divided randomly into 4 groups: carboxymethyl cellulose (CMC) (0.2 mL), Intrasite gel, and CPPP (25 or 50 mg/mL). Gross morphology, wounds treatment with the CPPP, and Intrasite gel accelerate the rate of wound healing compared to CMC group. Ten days after surgery, the animals were sacrificed. Histological assessment revealed that the wounds treated with CPPP showed that wound closure site contained little amount of scar and the granulation tissue contained more collagen and less inflammatory cells than wound treated with CMC. This finding was confirmed with Masson's trichrome staining. The antioxidant defence enzymes catalase (CAT) and superoxide dismutase (SOD) were significantly increased in the wound homogenates treated with CPPP (P < 0.05) compared to CMC treated group. However, in the CPPP treatment group, lipid peroxidation (MDA) was significantly decreased (P < 0.05), suggesting that the CPPP also has an important role in protection against lipid peroxidation-induced skin injury after ten days of treatment with CPPP, which is similar to the values of cytokines TGF-ß and TNF-α in tissue homogenate. Finally the administration of CPPP at a dosage of 25 and 50 mg/kg was suitable for the stimulation of wound healing.


Assuntos
Antioxidantes/metabolismo , Chalconas/administração & dosagem , Cicatrização/efeitos dos fármacos , Animais , Chalconas/síntese química , Colágeno/metabolismo , Tecido de Granulação/metabolismo , Humanos , Peroxidação de Lipídeos , Masculino , Ratos , Fator de Necrose Tumoral alfa/metabolismo
10.
PLoS One ; 8(5): e64751, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23724090

RESUMO

BACKGROUND: The current study was carried out to examine the gastroprotective effects of Parkia speciosa against ethanol-induced gastric mucosa injury in rats. METHODOLOGY/PRINCIPAL FINDINGS: Sprague Dawley rats were separated into 7 groups. Groups 1-2 were orally challenged with carboxymethylcellulose (CMC); group 3 received 20 mg/kg omeprazole and groups 4-7 received 50, 100, 200 and 400 mg/kg of ethanolic leaf extract, respectively. After 1 h, CMC or absolute ethanol was given orally to groups 2-7. The rats were sacrificed after 1 h. Then, the injuries to the gastric mucosa were estimated through assessment of the gastric wall mucus, the gross appearance of ulcer areas, histology, immunohistochemistry and enzymatic assays. Group 2 exhibited significant mucosal injuries, with reduced gastric wall mucus and severe damage to the gastric mucosa, whereas reductions in mucosal injury were observed for groups 4-7. Groups 3-7 demonstrated a reversal in the decrease in Periodic acid-Schiff (PAS) staining induced by ethanol. No symptoms of toxicity or death were observed during the acute toxicity tests. CONCLUSION: Treatment with the extract led to the upregulation of heat-shock protein 70 (HSP70) and the downregulation of the pro-apoptotic protein BAX. Significant increases in the levels of the antioxidant defense enzymes glutathione (GSH) and superoxide dismutase (SOD) in the gastric mucosal homogenate were observed, whereas that of a lipid peroxidation marker (MDA) was significantly decreased. Significance was defined as p<0.05 compared to the ulcer control group (Group 2).


Assuntos
Antiulcerosos/uso terapêutico , Antioxidantes/uso terapêutico , Fabaceae/química , Extratos Vegetais/uso terapêutico , Folhas de Planta/química , Úlcera Gástrica/tratamento farmacológico , Animais , Antiulcerosos/efeitos adversos , Antiulcerosos/farmacologia , Antioxidantes/farmacologia , Etanol , Feminino , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , Glutationa/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Imuno-Histoquímica , Masculino , Malondialdeído/metabolismo , Muco/metabolismo , Reação do Ácido Periódico de Schiff , Extratos Vegetais/efeitos adversos , Extratos Vegetais/farmacologia , Ratos , Ratos Sprague-Dawley , Úlcera Gástrica/enzimologia , Úlcera Gástrica/patologia , Superóxido Dismutase/metabolismo , Testes de Toxicidade Aguda , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA