RESUMO
BACKGROUND: The cytokinesis-block micronucleus (CBMN) assay is an internationally recognized method for measuring DNA damage after exposure to genotoxic agents, as well as a biomarker for DNA repair and chromosomal instability. The high baseline level of micronuclei (MN) in the healthy population has limited the sensitivity and application of the CBMN assay for the follow-up of exposed populations. We reevaluated the sensitivity of the CBNM assay using semi-automated MN scoring following telomere and centromere (TC) staining after in vitro exposure to genotoxic agents (mitomycin or radiation) or aneugenic agents (vinblastine). MATERIALS AND METHODS: Blood samples from 12 healthy donors were exposed to 137Cs at seven doses from 0.1-4 Gy and cultured for 72 h. Cytochalasin B was added at 46 h of culture. The exposure of chemical agents (mitomycin or vinblastine) was performed after 48 h of culture for 3 h. Cytochalasin B was added after treatment and slides were prepared 24 h after. MN was semi-automatically scored following TC staining. Nucleoplasmic bridges (NPBs) and nuclear buds (NBUDs) were assessed in a human cell line after TC staining. RESULTS: The introduction TC staining to the scoring of MN not only renders MN scoring more efficient and robust, but also permits discrimination between exposure to clastogenic (MN with only telomere signals) and aneugenic agents (MN with both TC signals). The resulting improvement of MN detection led to an increase in the sensitivity of the CBMN assay following low-dose radiation exposure (0.3 versus 0.1 Gy). Hyperradiosensitivity phenomenon was observed after low dose exposure. A dose-response curve was obtained for up to 4 Gy. In addition, TC staining permits assessment of the nature of NPBs and NBUDs as biomarkers for genotoxicity and chromosomal instability. CONCLUSION: These approaches can be potentially used to follow-up populations exposed to genotoxic agents and assess cancer risk.
Assuntos
Centrômero/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Testes de Mutagenicidade , Telômero/efeitos dos fármacos , Aneugênicos/farmacologia , Centrômero/genética , Citocinese/efeitos dos fármacos , Citocinese/genética , Dano ao DNA/genética , Humanos , Linfócitos/efeitos dos fármacos , Micronúcleos com Defeito Cromossômico/efeitos dos fármacos , Testes para Micronúcleos , Mutagênicos/toxicidade , Medição de Risco , Telômero/genéticaRESUMO
The authors wish to make the following corrections to this paper [...].
RESUMO
Telomere shortening is involved in age-related disorders, such as cancer and cardiovascular diseases. Recently, telomerase re-activation strategies have been proposed to counteract telomere shortening and its consequences. Here, we investigated the benefit of dietary supplementation with a mix of S-adenosyl-methionine (SAMe) and a polysaccharide extract of Astragalus (APS) on telomere length of circulating lymphocytes of healthy volunteers. Blood lymphocytes of a cohort of 26 healthy volunteers who were administrated the mix of SAMe and APS in a food supplement for one year were collected. In vitro treatment of blood lymphocytes of healthy volunteers with the mix was also performed. A cohort of 150 healthy volunteers was used as a control. Telomere length was measured by Q-FISH. The micronucleus assay was performed to detect genotoxicity of the mix. The telomeres of circulating lymphocytes of the cohort of 26 donors supplemented with the mix were significantly longer than those of matched controls (p < 10-4). This elongation was essentially observed in the lymphocytes of older donors. Similarly, in vitro treatment of circulating lymphocytes with the mix significantly increased telomere length and decrease the proportion of cells with short telomeres. Here, we observed an increase in telomere length after in vivo and in vitro administration of a mix with SAMe and APS. The benefit of dietary supplementation with this mix opens a new horizon for the battle against aging and could be used in the treatment of chronic age-related disorders.
Assuntos
Antioxidantes/administração & dosagem , Suplementos Nutricionais , Medicina Tradicional Chinesa , Telômero/metabolismo , Adolescente , Adulto , Idoso , Astrágalo/metabolismo , Criança , Pré-Escolar , Humanos , Linfócitos/metabolismo , Pessoa de Meia-Idade , Polissacarídeos/administração & dosagem , Polissacarídeos/química , S-Adenosilmetionina/administração & dosagem , S-Adenosilmetionina/química , Encurtamento do Telômero , Adulto JovemRESUMO
To identify the cells responsible for the initiation and maintenance of Hodgkin lymphoma (HL) cells, we have characterized a subpopulation of HL cells grown in vitro and in vivo with the aim of establishing a reliable and robust animal model for HL. To validate our model, we challenged the tumor cells in vivo by injecting the alkylating histone-deacetylase inhibitor, EDO-S101, a salvage regimen for HL patients, into xenografted mice. Methodology: Blood lymphocytes from 50 HL patients and seven HL cell lines were used. Immunohistochemistry, flow cytometry, and cytogenetics analyses were performed. The in vitro and in vivo effects of EDO-S101 were assessed. Results: We have successfully determined conditions for in vitro amplification and characterization of the HL L428-c subline, containing a higher proportion of CD30-/CD15- cells than the parental L428 cell line. This subline displayed excellent clonogenic potential and reliable reproducibility upon xenografting into immunodeficient NOD-SCID-gamma (-/-)(NSG) mice. Using cell sorting, we demonstrate that CD30-/CD15- subpopulations can gain the phenotype of the L428-c cell line in vitro. Moreover, the human cells recovered from the seventh week after injection of L428-c cells into NSG mice were small cells characterized by a high frequency of CD30-/CD15- cells. Cytogenetic analysis demonstrated that they were diploid and showed high telomere instability and telomerase activity. Accordingly, chromosomal instability emerged, as shown by the formation of dicentric chromosomes, ring chromosomes, and breakage/fusion/bridge cycles. Similarly, high telomerase activity and telomere instability were detected in circulating lymphocytes from HL patients. The beneficial effect of the histone-deacetylase inhibitor EDO-S101 as an anti-tumor drug validated our animal model. Conclusion: Our HL animal model requires only 10³ cells and is characterized by a high survival/toxicity ratio and high reproducibility. Moreover, the cells that engraft in mice are characterized by a high frequency of small CD30-/CD15- cells exhibiting high telomerase activity and telomere dysfunction.
RESUMO
Background: Microsatellite and chromosomal instability have been investigated in Hodgkin lymphoma (HL). Materials and Methods: We studied seven HL cell lines (five Nodular Sclerosis (NS) and two Mixed Cellularity (MC)) and patient peripheral blood lymphocytes (100 NS-HL and 23 MC-HL). Microsatellite instability (MSI) was assessed by PCR. Chromosomal instability and telomere dysfunction were investigated by FISH. DNA repair mechanisms were studied by transcriptomic and molecular approaches. Results: In the cell lines, we observed high MSI in L428 (4/5), KMH2, and HDLM2 (3/5), low MSI in L540, L591, and SUP-HD1, and none in L1236. NS-HL cell lines showed telomere shortening, associated with alterations of nuclear shape. Small cells were characterized by telomere loss and deletion, leading to chromosomal fusion, large nucleoplasmic bridges, and breakage/fusion/bridge (B/F/B) cycles, leading to chromosomal instability. The MC-HL cell lines showed substantial heterogeneity of telomere length. Intrachromosmal double strand breaks induced dicentric chromosome formation, high levels of micronucleus formation, and small nucleoplasmic bridges. B/F/B cycles induced complex chromosomal rearrangements. We observed a similar pattern in circulating lymphocytes of NS-HL and MC-HL patients. Transcriptome analysis confirmed the differences in the DNA repair pathways between the NS and MC cell lines. In addition, the NS-HL cell lines were radiosensitive and the MC-cell lines resistant to apoptosis after radiation exposure. Conclusions: In mononuclear NS-HL cells, loss of telomere integrity may present the first step in the ongoing process of chromosomal instability. Here, we identified, MSI as an additional mechanism for genomic instability in HL.
RESUMO
Background: We analyzed telomere maintenance mechanisms (TMMs) in lymph node samples from HL patients treated with standard therapy. The TMMs correlated with clinical outcomes of patients. Materials and Methods: Lymph node biopsies obtained from 38 HL patients and 24 patients with lymphadenitis were included in this study. Seven HL cell lines were used as in vitro models. Telomerase activity (TA) was assessed by TRAP assay and verified through hTERT immunofluorescence expression; alternative telomere lengthening (ALT) was also assessed, along with EBV status. Results: Both TA and ALT mechanisms were present in HL lymph nodes. Our findings were reproduced in HL cell lines. The highest levels of TA were expressed in CD30-/CD15- cells. Small cells were identified with ALT and TA. Hodgkin and Reed Sternberg cells contained high levels of PML bodies, but had very low hTERT expression. There was a significant correlation between overall survival (p < 10-3), event-free survival (p < 10-4), and freedom from progression (p < 10-3) and the presence of an ALT profile in lymph nodes of EBV+ patients. Conclusion: The presence of both types of TMMs in HL lymph nodes and in HL cell lines has not previously been reported. TMMs correlate with the treatment outcome of EBV+ HL patients.
RESUMO
The mechanisms behind the transmission of chromosomal aberrations (CA) remain unclear, despite a large body of work and major technological advances in chromosome identification. We reevaluated the transmission of CA to second- and third-division cells by telomere and centromere (TC) staining followed by M-FISH. We scored CA in lymphocytes of healthy donors after in vitro irradiation and those of cancer patients treated by radiation therapy more than 12 years before. Our data demonstrate, for the first time, that dicentric chromosomes (DCs) decreased by approximately 50% per division. DCs with two centromeres in close proximity were more efficiently transmitted, representing 70% of persistent DCs in ≥M3 cells. Only 1/3 of acentric chromosomes (ACs), ACs with four telomeres, and interstitial ACs, were paired in M2 cells and associated with specific DCs configurations. In lymphocytes of cancer patients, 82% of detected DCs were characterized by these specific configurations. Our findings demonstrate the high stability of DCs with two centromeres in close proximity during cell division. The frequency of telomere deletion increased during cell cycle progression playing an important role in chromosomal instability. These findings could be exploited in the follow-up of exposed populations.