Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 60(14): 1840-1855, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38268472

RESUMO

Atmospheric aerosol effects on ecological and human health remain uncertain due to their highly complex and evolving nature when suspended in air. Atmospheric chemistry, global climate/oceanic and health exposure models need to incorporate more realistic representations of aerosol particles, especially their bulk and surface chemistry, to account for the evolution in aerosol physicochemical properties with time. (Photo)chemistry driven by iron (Fe) in atmospheric aerosol particles from natural and anthropogenic sources remains limited in these models, particularly under aerosol liquid water conditions. In this feature article, recent advances from our work on Fe (photo)reactivity in multicomponent aerosol systems are highlighted. More specifically, reactions of soluble Fe with aqueous extracts of biomass burning organic aerosols and proxies of humic like substances leading to brown carbon formation are presented. Some of these reactions produced nitrogen-containing gaseous and condensed phase products. For comparison, results from these bulk aqueous phase chemical studies were compared to those from heterogeneous reactions simulating atmospheric aging of Fe-containing reference materials. These materials include Arizona test dust (AZTD) and combustion fly ash particles. Also, dissolution of Fe and other trace elements is presented from simulated human exposure experiments to highlight the impact of aerosol aging on levels of trace metals. The impacts of these chemical reactions on aerosol optical, hygroscopic and morphological properties are also emphasized in light of their importance to aerosol-radiation and aerosol-cloud interactions, in addition to biogeochemical processes at the sea/ocean surface microlayer upon deposition. Future directions for laboratory studies on Fe-driven multiphase chemistry are proposed to advance knowledge and encourage collaborations for efficient utilization of expertise and resources among climate, ocean and health scientific communities.

2.
Commun Chem ; 6(1): 198, 2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37717093

RESUMO

Heterogeneous reaction of gas phase NO2 with atmospheric humic-like substances (HULIS) is potentially an important source of volatile organic compounds (VOCs) including nitrogen (N)-containing compounds, a class of brown carbon of emerging importance. However, the role of ubiquitous water-soluble aerosol components in this multiphase chemistry, namely nitrate and iron ions, remains largely unexplored. Here, we used secondary electrospray ionization ultrahigh-resolution mass spectrometry for real-time measurements of VOCs formed during the heterogeneous reaction of gas phase NO2 with a solution containing gallic acid (GA) as a proxy of HULIS at pH 5 relevant for moderately acidic aerosol particles. Results showed that the number of detected N-containing organic compounds largely increased from 4 during the NO2 reaction with GA in the absence of nitrate and iron ions to 55 in the presence of nitrate and iron ions. The N-containing compounds have reduced nitrogen functional groups, namely amines, imines and imides. These results suggest that the number of N-containing compounds is significantly higher in deliquescent aerosol particles due to the influence of relatively higher ionic strength from nitrate ions and complexation/redox reactivity of iron cations compared to that in the dilute aqueous phase representative of cloud, fog, and rain water.

3.
Environ Sci Process Impacts ; 25(2): 151-164, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36004543

RESUMO

As scientists engage in research motivated by climate change and the impacts of pollution on air, water, and human health, we increasingly recognize the need for the scientific community to improve communication and knowledge exchange across disciplines to address pressing and outstanding research questions holistically. Our professional paths have crossed because our research activities focus on the chemical reactivity of Fe-containing minerals in air and water, and at the air-sea interface. (Photo)chemical reactions driven by Fe can take place at the surface of the particles/droplets or within the condensed phase. The extent and rates of these reactions are influenced by water content and biogeochemical activity ubiquitous in these systems. One of these reactions is the production of reactive oxygen species (ROS) that cause damage to respiratory organs. Another is that the reactivity of Fe and organics in aerosol particles alter surficial physicochemical properties that impact aerosol-radiation and aerosol-cloud interactions. Also, upon deposition, aerosol particles influence ocean biogeochemical processes because micronutrients such as Fe or toxic elements such as copper become bioavailable. We provide a perspective on these topics and future research directions on the reactivity of Fe in atmospheric aerosol systems, from sources to short- and long-term impacts at the sinks with emphasis on needs to enhance the predictive power of atmospheric and ocean models.


Assuntos
Poluição do Ar , Ferro , Humanos , Ferro/química , Água , Atmosfera/química , Aerossóis/química , Oceanos e Mares
4.
J Colloid Interface Sci ; 609: 469-481, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34887063

RESUMO

HYPOTHESIS: The interactions of organic molecules with mineral surfaces are influenced by several factors such as adsorbate speciation, surface atomic and electronic structure, and environmental conditions. When coupled with thermodynamic techniques, energetics from atomistic modeling can provide a molecular-level picture of which factors determine reactivity. This is paramount for evaluating the chemical processes which control the fate of these species in the environment. EXPERIMENTS: Inner-sphere adsorption of oxalate and pyrocatechol on (001), (110), and (012) α-Fe2O3 surfaces was modeled using Density Functional Theory (DFT). Unique bidentate binding modes were sampled along each facet to study how different adsorbate and surface factors govern site preference. Adsorption energetics were then calculated using a DFT + thermodynamics approach which combines DFT energies with tabulated data and Nernst-based corrective terms to incorporate different experimental parameters. FINDINGS: Instead of a universal trend, each facet displays a unique factor that dominates site preference based on either strain (001), functional groups (110), or topography (012). Adsorption energies predict favorable inner-sphere adsorption for both molecules but opposite energetic trends with varying pH. Additionally, vibrational analysis was conducted for each system and compared to experimental IR data. The work presented here provides an effective, computational methodology to study numerous adsorption processes occurring at the surface-aqueous interface.


Assuntos
Polifenóis , Adsorção , Teoria da Densidade Funcional , Compostos Férricos , Termodinâmica
5.
Commun Chem ; 5(1): 112, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36697654

RESUMO

Nitrogen-containing organic carbon (NOC) in atmospheric particles is an important class of brown carbon (BrC). Redox active NOC like aminophenols received little attention in their ability to form BrC. Here we show that iron can catalyze dark oxidative oligomerization of o- and p-aminophenols under simulated aerosol and cloud conditions (pH 1-7, and ionic strength 0.01-1 M). Homogeneous aqueous phase reactions were conducted using soluble Fe(III), where particle growth/agglomeration were monitored using dynamic light scattering. Mass yield experiments of insoluble soot-like dark brown to black particles were as high as 40%. Hygroscopicity growth factors (κ) of these insoluble products under sub- and super-saturated conditions ranged from 0.4-0.6, higher than that of levoglucosan, a prominent proxy for biomass burning organic aerosol (BBOA). Soluble products analyzed using chromatography and mass spectrometry revealed the formation of ring coupling products of o- and p-aminophenols and their primary oxidation products. Heterogeneous reactions of aminophenol were also conducted using Arizona Test Dust (AZTD) under simulated aging conditions, and showed clear changes to optical properties, morphology, mixing state, and chemical composition. These results highlight the important role of iron redox chemistry in BrC formation under atmospherically relevant conditions.

6.
Environ Sci Technol ; 55(1): 209-219, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33290060

RESUMO

Iron-driven secondary brown carbon formation reactions from water-soluble organics in cloud droplets and aerosols create insoluble and soluble products of emerging atmospheric importance. This work shows, for the first time, results on dark iron-catalyzed polymerization of catechol forming insoluble black polycatechol particles and colored water-soluble oligomers under conditions characteristic of viscous multicomponent aerosol systems with relatively high ionic strength (I = 1-12 m) and acidic pH (∼2). These systems contain ammonium sulfate (AS)/nitrate (AN) and C3-C5 dicarboxylic acids, namely, malonic, malic, succinic, and glutaric acids. Using dynamic light scattering (DLS) and ultra high pressure liquid chromatography-mass spectrometry (UHPLC-MS), we show results on the rate of particle growth/agglomeration and identity of soluble oligomeric reaction products. We found that increasing I above 1 m and adding diacids with oxygen-to-carbon molar ratio (O:C > 1) significantly reduced the rate of polycatechol formation/aggregation by a factor of 1.3 ± 0.4 in AS solution in the first 60 min of reaction time. Using AN, rates were too slow to be quantified using DLS, but particles formed after 24 h reaction time. These results were explained by the relative concentration and affinity of ligands to Fe(III). We also report detectable amounts of soluble and colored oligomers in reactions with a slow rate of polycatechol formation, including organonitrogen compounds. These results highlight that brown carbon formation from iron chemistry is efficient under a wide range of aerosol physical states and chemical composition.


Assuntos
Carbono , Ferro , Aerossóis , Sulfato de Amônio , Catálise
7.
Environ Sci Technol ; 53(12): 6708-6717, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31034222

RESUMO

Oxalate and sulfate are ubiquitous components of ambient aerosols with a high complexation affinity to iron. However, their effect on iron-driven secondary brown carbon formation in solution from soluble aromatic and aliphatic reagents was not studied. We report masses and hydrodynamic particle sizes of insoluble particles formed from the dark aqueous phase reaction of catechol, guaiacol, fumaric, and muconic acids with Fe(III) in the presence of oxalate or sulfate. Results show that oxalate decreases particle yield in solution from the reaction of Fe(III), with a stronger effect for guaiacol than catechol. For both compounds, the addition of sulfate results in the formation of more polydisperse (0.1-5 µm) and heavier particles than those from control experiments. Reactions with fumaric and muconic acids show that oxalate (not sulfate) and pH are determining factors in the efficiency of particle formation in solution. Polymerization reactions occur readily in the presence of sulfate in solution producing particles with iron-coordinated and/or pore-trapped sulfate anions. The addition of oxalate to the reactions of Fe(III) with all organics, except guaiacol, produced fewer and larger polymeric particles (>0.5 µm). These results imply that even in the presence of competing ligands, the formation of insoluble and colored particles from soluble organic precursors still dominates over the formation of soluble iron complexes.


Assuntos
Carbono , Ferro , Catálise , Compostos Férricos , Oxalatos , Sulfatos
8.
J Phys Chem A ; 120(46): 9270-9280, 2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27792343

RESUMO

Reaction pathway information and transition states are crucial for understanding adsorption mechanisms of pollutants, such as dimethylarsinic acid (DMA), at the liquid-solid interface. We report a detailed computational analysis of the complexes of DMA on iron (oxyhydr)oxides, including activation energies, transition states, Gibbs free energies of adsorption, Mulliken charges, charge redistribution upon adsorption, and stretching frequencies of As-O bonds for comparison with experimental spectroscopic data. Calculations were performed using density functional theory (DFT) at the B3LYP/6-311+G(d,p) level using both implicit and explicit hydration. For comparison, calculations were also performed for arsenate. Dispersion corrections were included since experimental data showed that DMA forms mostly outer-sphere complexes. Calculated electronic energies indicate that dispersion corrections are important when dealing with outer-sphere complexes, and that there is a high activation barrier of ca. 43 kJ mol-1 to transition from mono- to bidentate DMA complexes. Additionally, extending the modeled iron (oxyhydr)oxides surface to include four Fe centers and analyzing the charge distribution upon adsorption of DMA reveals that electrostatics play a role in the transition from outer-sphere to monodentate complexes. The significance of our results for the overall surface complexation mechanism of DMA and arsenate is discussed.

9.
J Phys Chem A ; 118(30): 5667-79, 2014 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-25007345

RESUMO

Aromatic organoarsenicals, such as p-arsanilic acid (pAsA), are still used today as feed additives in the poultry and swine industries in developing countries. Through the application of contaminated litter as a fertilizer, these compounds enter the environment and interact with reactive soil components such as iron and aluminum oxides. Little is known about these surface interactions at the molecular level. We report density functional theory (DFT) calculations on the energies, optimal geometries, and vibrational frequencies for hydrated pAsA/iron oxide complexes, as well as changes in Gibbs free energy, enthalpy, and entropy for various types of ligand exchange reactions leading to both inner- and outer-sphere complexes. Similar calculations using arsenate are also shown for comparison, along with activation barriers and transition state geometries between inner-sphere complexes. Minimum energy calculations show that the formation of inner- and outer-sphere pAsA/iron oxide complexes is thermodynamically favorable, with the monodentate mononuclear complexes being the most favorable. Interatomic As-Fe distances are calculated to be between 3.3 and 3.5 Å for inner-sphere complexes and between 5.2 and 5.6 Å for outer-sphere complexes. In addition, transition state calculations show that activation energies greater than 23 kJ/mol are required to form the bidentate binuclear pAsA/iron oxide complexes, and that formation of arsenate bidentate binuclear complexes is thermodynamically -rather than kinetically- driven. Desorption thermodynamics using phosphate ions show that reactions are most favorable using HPO4(2-) species. The significance of our results for the overall surface complexation mechanism of pAsA and arsenate is discussed.


Assuntos
Ácido Arsanílico/química , Compostos Férricos/química , Modelos Químicos , Água/química , Arseniatos/química , Simulação por Computador , Entropia , Concentração de Íons de Hidrogênio , Íons/química , Cinética , Fosfatos/química , Termodinâmica , Vibração
10.
Environ Sci Technol ; 48(1): 394-402, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24295105

RESUMO

Uptake and photoreactivity of catechol-Fe complexes are investigated at the gas/solid interface under humid and dry conditions, along with the nature of the hydrogen-bonding network of adsorbed water. Catechol was chosen as a simple model for organics in aerosols. Iron chloride was used to distinguish ionic mobility from binding to coordinated iron(III) in hematite. Studies were conducted using diffuse reflectance infrared Fourier transform spectroscopy as a function of irradiation time. Results show that adsorbed water at 30% relative humidity (RH), not light, increases the concentration of adsorbed catechol by a factor of 3 over 60 min relative to dry conditions. Also, our data show that, at 30% RH and under light and dark conditions, growth factors describing the concentration of adsorbed catechol are very similar suggesting that light does not significantly enhance the uptake of catechol vapor on FeCl3. Surface water also enhances the initial photodecay kinetics of catechol-Fe complexes at 30% RH by a factor of 10 relative to control experiments (RH < 1%, or no FeCl3 under humid conditions). Absorptions assigned to carbonyl groups were not observed with irradiation time, which was explained by the dominance of FeCl(2+) species relative to FeOH(2+) in the highly acidic "quasi-liquid" phase at 30% RH. Clear differences in the hydrogen-bonding network upon gaseous catechol uptake are observed in the dark and light and during the photodecay of adsorbed catechol. The implications of these results on our understanding of interfacial processes in aged iron-containing surfaces are discussed.


Assuntos
Catecóis/química , Cloretos/química , Compostos Férricos/química , Água/química , Adsorção , Umidade , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Propriedades de Superfície
11.
J Phys Chem A ; 117(40): 10368-80, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24044553

RESUMO

Surface water plays a crucial role in facilitating or inhibiting surface reactions in atmospheric aerosols. However, little is known about the role of surface water in the complexation of organic acid molecules to transition metals in multicomponent aerosol systems. We report herein results from real time DRIFTS experiments that show in situ complexation of catechol to Fe(III) under humid conditions. Catechol was schosen as a simple model for humic-like substances (HULIS) in aerosols and aged polyaromatic hydrocarbons (PAH). It was also detected in secondary organic aerosols (SOA) formed from the reaction of hydroxyl radicals with benzene. Given the importance of the iron content in aerosols and its biogeochemistry, our studies were conducted using FeCl3. For comparison, these surface-sensitive studies were complemented with bulk aqueous ATR-FTIR, UV-vis, and HPLC measurements for structural, quantitative, and qualitative information about complexes in the bulk, and potential degradation products in the dark. Under dry conditions, DRIFTS spectra show that gas phase catechol adsorbs molecularly and is fully protonated on samples containing FeCl3 with no evidence of complexation to Fe(III). Upon increasing the relative humidity to a value below the deliquescence of FeCl3, surface water facilitates ionic mobility resulting in the formation of monodentate catechol-Fe complexes. These complexes are stable at the gas/solid interface and do not undergo any further degradation in the dark as shown from bulk UV-vis and HPLC experiments. The implications of our studies on understanding interfacial and condensed phase chemistry relevant to multicomponent aerosols, water thin films on buildings, and ocean surfaces containing transition metals are discussed.


Assuntos
Catecóis/química , Cloretos/química , Compostos Férricos/química , Radical Hidroxila/química , Água/química , Adsorção , Aerossóis , Benzeno/química , Substâncias Húmicas , Cinética
12.
J Phys Chem A ; 116(41): 10143-9, 2012 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-23009287

RESUMO

The surface chemistry of phosphorus and arsenic compounds in their organic and inorganic forms is of great interest to the scientific and industrial communities due to its role in controlling their transport, bioaccessibility and speciation. We report herein in situ and surface-sensitive rapid kinetic studies on the adsorption of phosphate to Fe (oxyhydr)oxides in the presence and absence of dimethylarsinic acid (DMA) and arsenate. These studies were conducted at pH 7 using ATR-FTIR in the flow mode, which were complemented with detailed kinetic analysis of the desorption behavior of DMA and arsenate over the same range of aqueous [phosphate]. Values for apparent rates of adsorption and desorption were extracted from the time dependence of given spectral components characteristic of surface phosphate, DMA, or arsenate. Results show that pseudo adsorption rate constants of phosphate on Fe (oxyhydr)oxide films increase in this order: arsenate-covered < DMA-covered ≤ freshly prepared. Also, pseudo desorption rate constants of DMA complexes are 7-12 times higher than arsenate using phosphate as a desorbing agent. When these results are combined with earlier work on the thermodynamics, kinetics, and structure of surface complexes, they suggest that, during initial times of surface interactions, increasing organic substitution on arsenate increases the proportion of relatively weakly bonded complexes (monodentate and outer-sphere).


Assuntos
Arsênio/química , Compostos Férricos/química , Fosfatos/química , Adsorção , Ácido Cacodílico/química , Concentração de Íons de Hidrogênio , Cinética , Ligantes , Estrutura Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Termodinâmica
13.
J Phys Chem A ; 116(6): 1596-604, 2012 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-22257280

RESUMO

Dimethylarsinic acid (DMA) is an organoarsenical compound that, along with monomethylarsonic acid, poses a health and an environmental risk, and a challenge to the energy industry. Little is known about the surface chemistry of DMA at the molecular level with materials relevant to geochemical environments and industrial sectors. We report herein the first in situ and surface-sensitive rapid kinetic studies on the adsorption and desorption of DMA to/from hematite and goethite at pH 7 and I = 0.01 M KCl using ATR-FTIR. Values for the apparent rates of adsorption and desorption were extracted from experimental data as a function of spectral components, flow rate of the aqueous phase, film thickness of hematite, and using chloride and hydrogen phosphate as desorbing agents. The adsorption kinetic data show fast and slow rates, consistent with the formation of more than one type of adsorbed DMA. Apparent adsorption and desorption rate constants were extracted from the dependency of the initial adsorption rates on [DMA(aq)]. Desorption rate constants were also extracted from desorption experiments using hydrogen phosphate and chloride solutions, and were found to be higher by 1-2 orders of magnitude than those using chloride. In light of the complex ligand exchange reaction mechanism of DMA desorption by phosphate species at pH 7, apparent desorption rate constants were found to depend on [hydrogen phosphate] with an order of 0.3. The impact of our studies on the environmental fate of DMA in geochemical environments, and the design of technologies to reduce arsenic content in fuels is discussed.


Assuntos
Ácido Cacodílico/química , Compostos Férricos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Adsorção , Cinética
14.
Environ Sci Technol ; 45(24): 10438-44, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22029696

RESUMO

Dimethylarsinic Acid (DMA) belongs to an important class of organoarsenical compounds commonly detected in arsenic speciation studies of environmental samples and pyrolysis products of fossil fuels. Transformation of DMA under certain conditions leads to the formation of other forms of arsenic, which could be more toxic than DMA to biota, and more efficient in deactivating catalysts used in petrochemical refining. Published surface sensitive X-ray and infrared spectroscopic work suggested that DMA simultaneously forms inner- and outer-sphere complexes with iron-(oxyhydr)oxides. Computational work on the complexation of arsenicals with various surfaces of environmental and industrial interest provides useful information that aids in the interpretation of experimental spectroscopic data as well as predictions of thermodynamic favorability of surface interactions. We report herein Gibbs free energies of adsorption, ΔG(ads), for various ligand exchange reactions between hydrated complexes of DMA and Fe-(oxyhydr)oxide clusters calculated using density functional theory (DFT) at the B3LYP/6-311+G(d,p) level. Calculations using arsenate were also performed for comparison. Calculated As-(O,Fe) distances and stretching frequencies of As-O bonds are also reported for comparison with experimental spectroscopic data. Gibbs free energies of desorption, ΔG(des), due to reactions with phosphorus species at pH 7 are reported as well. Our results indicate that the formation of both inner- and outer-sphere DMA complexes is thermodynamically favorable, with the former having a more negative ΔG(ads). Values of ΔG(des) indicate that desorption favorability of DMA complexes increases in this order: bidentate < mondentate < outersphere. The significance of our results for the overall surface complexation mechanism of DMA is discussed.


Assuntos
Arseniatos/química , Ácido Cacodílico/química , Compostos Férricos/química , Poluentes Ambientais/química , Ligantes , Modelos Químicos , Termodinâmica
15.
J Colloid Interface Sci ; 358(2): 534-40, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21457993

RESUMO

Arsenic is an element that exists naturally in many rocks and minerals around the world. It also accumulates in petroleum, shale, oil sands, and coal deposits as a result of biogeochemical processes, and it has been found in fly ash from the combustion of solid biofuels. Arsenic compounds in their organic and inorganic forms pose both a health and an environmental risk, and continue to be a challenge to the energy industry. The environmental fate and removal technologies of arsenic compounds are controlled to a large extent by their surface interactions with inorganic and organic adsorbents. We report thermodynamic binding constants, K(binding), from applying the triple-layer surface complexation model to adsorption isotherm and pH envelope data for dimethylarsinic acid (DMA) and p-arsanilic acid (p-AsA) on hematite and goethite. Ligand exchange reactions were constructed based on the interpretation of ATR-FTIR spectra of DMA and p-AsA surface complexes. Surface coverage of adsorbates was quantified in situ from the spectral component at 840 cm(-1). The best fit to the DMA adsorption data was obtained using outer-sphere complex formation, whereas for p-AsA, the best fit was obtained using two monodentate inner-sphere surface complexes. The significance of the results is discussed in relation to improving modeling tools used by environmental regulators and the energy sector for optimum control of arsenic content in fuels.


Assuntos
Ácido Arsanílico/química , Ácido Cacodílico/química , Compostos Férricos/química , Modelos Moleculares , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Adsorção , Sítios de Ligação , Fontes Geradoras de Energia/normas , Poluição Ambiental , Propriedades de Superfície
16.
Phys Chem Chem Phys ; 13(14): 6507-16, 2011 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-21369566

RESUMO

Little is known about the interfacial photochemistry of transition metal cations and chromophores relevant to atmospheric aerosols. We report herein water uptake and in situ surface-sensitive spectroscopic studies on the photosensitized transformation of solid gallic acid (GA), externally mixed with FeCl(3) as a photosensitizer, under dry and humid conditions of <1% and 30% relative humidity (RH), respectively. GA is a hydrolysis product of tannic acid, a model macromolecule for humic-like substances (HULIS) in aerosols and aged polyaromatic hydrocarbons (PAH). Water uptake on GA and GA/FeCl(3) mixture films was quantified using a quartz crystal microbalance (QCM) as a function of %RH (<1-60%). Results indicate continuous multilayer formation of adsorbed water with no phase transitions, with a monolayer of adsorbed water forming around 30 and 12%RH, respectively. Photochemical studies were conducted using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Spectra were collected as a function of irradiation time (4 h), mass fraction of FeCl(3) (0.5-3%) using irradiance of simulated solar light equivalent to 120 Wm(-2) at 555 nm. Difference absorbance spectra show changes to GA functional groups suggesting the formation of organochlorine compounds in the condensed phase with their signature v(C=C) at 1601 cm(-1), and release of CO(2). Potential halogenation pathways of GA in the presence of Fe(3+) are discussed based on well-known aqueous phase chemistry. These pathways along with our results also suggest the release of volatile organochlorine compounds and Cl(2) gas. Apparent first order rate constants, k(s), of the photosensitized reactions were derived from kinetic curves of the most intense positive and negative spectral features at 1601 and 1381 cm(-1), respectively. Values of k(s) at 120 Wm(-2) are found to be higher than those reported from UV photo-Fenton reactions of GA in bulk aqueous phases containing H(2)O(2), Fe(2+) or Fe(3+). The implication of our studies on the aging of multicomponent aerosols containing organic matter, transition metals and halide ions due to heterogeneous photochemistry is discussed.

17.
Environ Sci Technol ; 44(20): 7802-7, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20857976

RESUMO

The surface chemistry of methylated arsenicals with ubiquitous geosorbents and industrial catalysts is poorly understood. These arsenic compounds pose both a health and an environmental risk in addition to being a challenge to the energy industry. We report herein a detailed spectroscopic analysis of the surface structure of dimethylarsinic acid (DMA) adsorbed on hematite and goethite using attenuated total internal reflectance Fourier transform infrared spectroscopy (ATR-FTIR). Spectra of adsorbed DMA, DMA(ads), were collected in situ as a function of pH and ionic strength, using both H(2)O and D(2)O at 298 K in flow mode. Experimental data were complemented with DFT calculations of geometries and frequencies of hydrated DMA-iron oxide clusters. Results indicate the simultaneous formation of inner- and outer-sphere complexes with distinct spectral components. Desorption behavior of DMA due to chloride and phosphate was studied as a function of time from the decrease in the absorbance of apparent spectral features. The impact of our studies on the environmental fate of DMA in geochemical environments and the design of technologies to reduce arsenic content in fuels are discussed.


Assuntos
Ácido Cacodílico/química , Compostos Férricos/química , Teoria Quântica , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Concentração de Íons de Hidrogênio , Concentração Osmolar , Propriedades de Superfície
18.
Environ Sci Technol ; 43(9): 3142-7, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19534126

RESUMO

The fate of organoarsenicals introduced to the environment through the application of arsenic-contaminated manure has attracted considerable attention after the recent implementation of the latest maximum contaminant level (MCL) of total arsenic in drinking water by the U.S. Environmental Protection Agency (EPA). We report herein detailed spectroscopic analysis of the surface structure of p-arsanilic acid (p-AsA) adsorbed on Fe-(oxyhydr)oxides using attenuated total internal reflectance Fourier transform infrared spectroscopy (ATR-FTIR). Spectra of p-AsA(ads) were collected in situ as a function of pH and ionic strength and using D20 at 298 K in flow mode. Results indicate the formation of inner-sphere complexes, which are likely monodentate and become protonated under acidic pH(D). We also examined the desorption efficiency of p-AsA(ads) due to flowing electrolyte and phosphate solutions as low as 0.1 mol/m3 (3 ppm P) by collecting ATR-FTIR spectra as a function of time. Our results suggest that aqueous phosphate is an efficient desorbing anion of p-AsA(ads), which has implications on its bioavailability and mobility in geochemical environments.


Assuntos
Ácido Arsanílico/química , Compostos Férricos/química , Adsorção , Óxido de Deutério/química , Meio Ambiente , Concentração de Íons de Hidrogênio , Ferro/química , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral , Propriedades de Superfície
19.
Environ Sci Technol ; 42(6): 1922-7, 2008 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18409614

RESUMO

The organoarsenical p-arsanilic acid (p-AsA) is used in the U.S. poultry industry as a feed additive and its structure resembles one of the stable biodegradation products of Roxarsone (ROX) in anaerobic environments. With the implementation of recent EPA MCL of total arsenic in drinking water (10 ppb), thereareconcernsaboutthefate of organoarsenicals introduced to the environment through the application of arsenic-contaminated manure. We report herein, for the first time, the thermodynamics of p-AsA binding to Fe-(oxyhydr)oxides using ATR-FTIR. ATR-FTIR spectra were used to quantify surface coverage of p-AsA, p-AsA(ads), by analyzing the broadband assigned to v(As-O) at 837 cm(-1). Adsorption isotherms were measured in situ at 298 K and pH 7 in the concentration range 1 microM to 40 mM. Values of Keq were obtained from Langmuir model fits and they range from 1411 to 3228 M(-1). We also determined the maximum adsorption capacities of Fe-(oxyhydr)oxides to p-AsA, and they range from 1.9 x 10(13) to 2.6 x 10(13) molecules/cm2. Our results suggest that p-AsA is more mobile than methylated and inorganic forms of arsenic and that the transport of nanoparticles with p-AsA(ads) might play a role in its mobility in geochemical environments.


Assuntos
Ácido Arsanílico/química , Adsorção , Compostos Férricos/química , Compostos de Ferro/química , Minerais , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA