Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Heliyon ; 10(11): e31957, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38867975

RESUMO

Background: Lactic acid bacteria (LAB) are utilized as a starter culture in the manufacturing of fermented dairy items, as a preservative for various food products, and as a probiotic. In our country, some research has been carried out, even if LAB plays a principal role in food preservation and improves the texture and taste of fermented foods, that is why we tried to evaluate their probiotic effect. The objective of this research was to determine the antibacterial activity of Lactococcus lactis (L. lactis) against Staphylococcus aureus (S. aureus) ATCC 29213, investigate their antioxidant activity, and characterize their sensitivity against 18 antibiotics. Methods: A total of 23 LAB (L. lactis subsp. cremoris, L. lactis subsp. Lactis diacetylactis, L. lactis subsp. lactis) were isolated from cow's raw milk. The antibacterial activity was performed using two techniques, competition for nutrients and a technique utilizing components nature, using the disk diffusion method. The sensitivity of the studied LAB to different antibiotics was tested on Man rogosa sharp (MRS) agar using commercial antibiotic disks. All strains of LAB were examined for their antioxidant activity. The antioxidant activity of L. lactis was tested by 2,2-diphenyl-1 picrylhydrazyl (DPPH). Results: The results showed that the MRS medium was more adapted than Muller Hinton Agar (MHA) to investigate the antibacterial activity of L. lactis against S. aureus ATCC 29213. Also, L. lactis exhibited a notable degree of antibacterial activity against S. aureus ATCC 29213. L. Lactis subsp. Lactis displayed higher antibacterial activities, followed by L. lactis ssp. lactis biovar. diacetylactis, and lastly, L. lactis ssp. cremoris against S. aureus ATCC 29213. Lc 26 among all strains of L. lactis showed a high potential antibacterial activity reaching 40 ± 3 mm against S. aureus ATCC 29213. All strains of L. lactis showed a slightly moderate antioxidant activity (10.56 ± 1.28%-26.29 ± 0.05 %). The results of the antibiotic resistance test indicate that all strains of L. lactis were resistant to cefotaxime, sulfamethoxazole-trimethoprim, and streptomycin and were sensitive to Ampicillin, Amoxicillin, Penicillin G, Teicoplanin, Vancomycin, Gentamicin 500, Tetracycline, and Chloramphenicol. These test results indicate that this strain falls within the criteria of not posing any harmful effects on human health. The important antibacterial properties recorded for all L. Lactis strains were derived from the production of antibacterial active metabolites, such as protein, diacetyl, hydrogen peroxide, and lactic acid, together with the fight for nutrients. Conclusion: This study suggests that the strains of L. lactis could be added as an antibacterial agent against S. aureus ATCC 29213 and can provide an important nutritional property for their antioxidant potential.

2.
Molecules ; 28(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38067423

RESUMO

Infertility is a well-recognized multifactorial problem affecting the majority of people who struggle with infertility issues. In recent times, among infertility cases, the male factor has acquired importance, and now it contributes to approximately half of the infertility cases because of different abnormalities. In the current study, we used natural phytochemicals as potential drug-lead compounds to target different receptor proteins that are involved in the onset of male infertility. A set of 210 plant phytochemicals were docked counter to active site residues of sex hormone-binding globulin, a disintegrin and metalloproteinase 17, and DNase I as receptor proteins. On the basis of binding scores and molecular dynamics simulation, the phytochemicals tricin, quercetin, malvidin, rhamnetin, isorhamnetin, gallic acid, kaempferol, esculin, robinetin, and okanin were found to be the potential drug candidates to treat male infertility. Molecular dynamics simulation showed tricin as a strong inhibitor of all selected receptor proteins because the ligand-protein complexes remained stabilized during the entire simulation time of 100 ns. Further, an in vivo study was designed to evaluate the effect of tricin in male rats with nicotine-induced infertility. It was explored that a high dose of tricin significantly reduced the levels of alanine transaminase, aspartate transaminase, urea, creatinine, cholesterol, triglyceride, and low-density lipoprotein and raised the level of high-density lipoprotein in intoxicated male rats. A high dose of tricin also increased the reproductive hormones (i.e., testosterone, luteinizing hormone, follicle-stimulating hormone, and prolactin) and reduced the level of DHEA-SO4. The phytochemical (tricin, 10 mg/kg body weight) also showed significant improvement in the histo-architecture after nicotine intoxication in rats. From the current study, it is concluded that the phytochemical tricin could serve as a potential drug candidate to cure male infertility.


Assuntos
Infertilidade Masculina , Nicotina , Humanos , Masculino , Ratos , Animais , Infertilidade Masculina/induzido quimicamente , Infertilidade Masculina/tratamento farmacológico , Hormônio Luteinizante , Hormônio Foliculoestimulante , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Simulação de Acoplamento Molecular
3.
Molecules ; 28(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36985647

RESUMO

Hepatitis E virus (HEV) is the notable causative agent of acute and chronic hepatic, renal, pancreatic, neurological, and hematopoietic blood cell infections with high risk in immunocompromised patients. Hepatic failure is mostly documented among adults, pregnant women, and patients with preexisting liver disease. HEV is a positive sense RNA virus of 7.2 kb genome size with typically three open reading frames (ORFs) which play essential roles in viral replication, genome assembly, and transcription. The mutational substitution in the viral RNA genome makes more it difficult to understand the actual relationship in the host-virus association. ORFs of HEV encode different structural and non-structural proteins and one of them is the capsid protein which is coded by ORF2. The capsid protein mediates the encapsulation of the viral genome as well as being involved in virion assembly. In the current study, the ligand-based docking approach was employed to inhibit the active amino acids of the viral capsid protein. Depending upon S-score, ADMET profiling, and drug scanning, the top ten tetrapeptides were selected as potential drug candidates with no toxicity counter to HEV receptor protein. The S-score or docking score is a mathematical function which predicts the binding affinities of docked complexes. The binding affinity of the predicted drug-target complexes helps in the selectivity of the desired compound as a potential drug. The best two selected peptides (i.e., TDGH with S-score of -8.5 and EGDE with S-score of -8.0) interacted with the active site amino acids of the capsid protein (i.e., Arg399, Gln420, and Asp444). The molecular dynamics simulations of RMSD trajectories of TDGH-capsid protein and EDGE-capsid protein have revealed that both docked complexes were structurally stable. The study revealed that these tetrapeptides would serve as strong potential inhibitors and a starting point for the development of new drug molecules against the HEV capsid protein. In future, in vivo studies are needed to explore selected peptides as potential drug candidates.


Assuntos
Vírus da Hepatite E , Gravidez , Humanos , Feminino , Vírus da Hepatite E/genética , Vírus da Hepatite E/metabolismo , Proteínas do Capsídeo/metabolismo , Peptídeos/metabolismo , Fígado/metabolismo , Aminoácidos/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-36231984

RESUMO

Cadmium toxicity is one of the deleterious abiotic factors that reduce wheat production. Two different cultivars (Akbar and Dilkash) were compared for their cadmium (0, 40 and 80 mg/kg) tolerance and responses towards Bacillus subtilis NA2, Aspergillus niger PMI-118 and L-proline. Both microbes were tested for heavy metal tolerance and production of various plant hormones and biological active enzyme characteristics under normal and cadmium stress. A completely randomized design (two cultivars × four treatments × three cadmium levels × three replicates) was adopted using distilled water as a control. The growth promotion potential of these strains under cadmium stress was determined by N-fixation, IAA synthesis, P-solubilization, amylase and proteases production. A pot experiment under controlled conditions was conducted to evaluate the effect of bacteria, fungi, and L-proline under cadmium stress. It was indicated from the result that plant biomass (46.43%), shoot length (22.40%), root length (25.06%), chlorophyll (17.17%), total sugars (27.07%), total proteins (86.01%) and ascorbic acid (83.27%) were improved with inoculation under control and cadmium stress. The accumulation of total flavonoids (48.64%), total phenolics (24.88%), hydrogen peroxide (53.96%) and activities of antioxidant enzymes CAT (26.37%) and APX (43.71%) were reduced in the plants treated with bacteria, fungi and L-proline than those under control. With parallel aids, Bacillus subtilis NA2 showed a higher cadmium tolerance and plant growth stability as compared to Aspergillus niger PMI-118 and L-proline and may be adopted in the future.


Assuntos
Metais Pesados , Poluentes do Solo , Amilases , Antioxidantes/metabolismo , Ácido Ascórbico/farmacologia , Aspergillus niger , Bacillus subtilis , Biodegradação Ambiental , Cádmio/metabolismo , Clorofila/metabolismo , Flavonoides/farmacologia , Peróxido de Hidrogênio/metabolismo , Metais Pesados/metabolismo , Peptídeo Hidrolases/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Plantas/metabolismo , Prolina/metabolismo , Prolina/farmacologia , Poluentes do Solo/análise , Açúcares/metabolismo , Triticum/metabolismo , Água/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-35649675

RESUMO

Potassium bromate (KBrO3) is an oxidising agent that is extensively used as a food additive, it is also a product of cosmetic and pharmaceutical relevance. The objective of this study was to evaluate the oxidative stress, genotoxicity, and apoptosis induced by KBrO3 in an experimental animal model. To study the toxic effects and oxidative stress, different doses of KBrO3 below LD50 (The half maximal lethal dose, 50, 100 and 150 mg/kg body weight) were given intraperitoneally to the mice for multiple time periods (24, 48, and 72 h). The results showed that KBrO3 significantly induces oxidative damage by increasing the levels of reactive oxygen species (ROS) and lipid peroxidase and depleted the levels of catalase (CAT), superoxide dismutase (SOD) and glutathione (GSH) enzymes in the serum and liver. Moreover, a significant increase of chromosomal aberrations in bone marrow cells and an elevated incidence of micronuclei in the peripheral blood of mice were observed. KBrO3 induces 3 ´ -OH end double-strand DNA breaks, which was evident in liver sections of the treated mice, and increases the percentage of apoptotic cells, as observed in TUNEL assays and flow cytometry analysis. The present findings indicate that KBrO3 induces oxidative stress, genotoxicity, and cytotoxicity in a dose- and time-dependent manner in mice.


Assuntos
Bromatos , Dano ao DNA , Animais , Bromatos/toxicidade , Glutationa/metabolismo , Fígado/metabolismo , Camundongos , Estresse Oxidativo
6.
PLoS One ; 17(3): e0265231, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35275977

RESUMO

Larrea tridentata (Sesse and Moc. ex DC.) Coville (family: Zygophyllaceae) is an aromatic evergreen shrub with resin-covered leaves, known to use in traditional medicine for diverse ailments. It also has immense pharmacological significance due to presence of powerful phenylpropanoids antioxidant, nordihydroguaiaretic acid (NDGA). The RNA sequence/transcriptome analyses connect the genomic information into the discovery of gene function. Hence, the acquaint analysis of L. tridentata is in lieu to characterize the transcriptome, and to identify the candidate genes involved in the phenylpropanoid biosynthetic pathway. To gain molecular insight, the bioinformatics analysis of transcriptome was performed. The total bases covered 48,630 contigs of length greater than 200 bp and above came out to 21,590,549 with an average GC content of 45% and an abundance of mononucleotide, SSR, including C3H, FAR1, and MADS transcription gene families. The best enzyme commission (EC) classification obtained from the assembled sequences represented major abundant enzyme classes e.g., RING-type E3 ubiquitin transferase and non-specific serine/threonine protein kinase. The KEGG pathway analysis mapped into 377 KEGG different metabolic pathways. The enrichment of phenylpropanoid biosynthesis pathways (22 genes i.e., phenylalanine ammonia-lyase, trans-cinnamate 4-monooxygenase, 4-coumarate-CoA ligase, cinnamoyl-CoA reductase, beta-glucosidase, shikimate O-hydroxycinnamoyl transferase, 5-O-(4-coumaroyl)-D-quinate 3'-monooxygenase, cinnamyl-alcohol dehydrogenase, peroxidase, coniferyl-alcohol glucosyltransferase, caffeoyl shikimate esterase, caffeoyl-CoA O-methyltransferase, caffeate O-methyltransferase, coniferyl-aldehyde dehydrogenase, feruloyl-CoA 6-hydroxylase, and ferulate-5-hydroxylase), and expression profile indicated antioxidant, anti-arthritic, and anticancer properties of L. tridentata. The present results could provide an important resource for squeezing biotechnological applications of L. tridentata.


Assuntos
Larrea , Transcriptoma , Antioxidantes , Redes e Vias Metabólicas/genética , Oxigenases de Função Mista
7.
Nanomaterials (Basel) ; 12(1)2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-35010111

RESUMO

Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and is ranked as the third most common cause of cancer-related mortality worldwide. Schinus molle (S. mole) L. is an important medicinal plant that contains many bioactive compounds with pharmacological properties. The role of S. molle leaf extract in the biosynthesis of silver nanoparticles (AgNPs) was determined. The biosynthesized AgNPs were thoroughly characterized by UV-vis spectrophotometry, transmission electron microscopy (TEM), X-ray diffraction (XRD), and dynamic light scattering (DLS) techniques. Furthermore, the cytotoxic effect of the biosynthesized AgNPs using S. molle (SMAgNPs) against HepG2 liver cancer cells was investigated. Reactive oxygen species generation, apoptosis induction, DNA damage, and autophagy activity were analyzed. The results clearly showed that the biosynthesized silver nanoparticles inhibited the proliferation of HepG2 by significantly (p < 0.05) inducing oxidative stress, cytotoxicity, DNA damage, apoptosis, and autophagy in a dose- and time-dependent manner. These findings may encourage integrating the potential of natural products and the efficiency of silver nanoparticles for the fabrication of safe, environmentally friendly, and effective anticancer agents.

8.
Saudi J Biol Sci ; 28(12): 7517-7527, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34512097

RESUMO

Houttuynia cordata Thunb., a perennial herb belonging to the Saururaceae family is a well-known ingredient of Traditional Chinese medicine (TCM) with several therapeutic properties. During the severe acute respiratory syndrome (SARS) outbreak in China, it was one of the approved ingredients in SARS preventative formulations and therefore, the plant may contain novel bioactive chemicals that can be used to suppress the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a virus for which there are currently no effective drugs available. Like all RNA viruses, SARS-CoV-2 encode RNA-dependent RNA polymerase (RdRp) enzyme which aids viral gene transcription and replication. The present study is aimed at understanding the potential of bioactive compounds from H. cordata as inhibitors of the SARS-CoV-2 RdRp enzyme. We investigated the drug-likeness of the plant's active constituents, such as alkaloids, polyphenols, and flavonoids, as well as their binding affinity for the RdRp enzyme. Molecular docking experiments show that compounds 3 (1,2,3,4,5-pentamethoxy-dibenzo-quinolin-7-one), 14 (7-oxodehydroasimilobine), and 21 (1,2-dimethoxy-3-hydroxy-5-oxonoraporphine) have a high affinity for the drug target and that the complexes are maintained by hydrogen bonds with residues like Arg553, Cys622 and Asp623, as well as hydrophobic interactions with other residues. The lead compounds' complexes with the target enzyme remained stable throughout the molecular dynamics simulation. Analysis of molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) and molecular mechanics generalized Born surface area (MM-GBSA) revealed the key residues contributing considerably to binding free energy. Thus, the findings reveal the potential of H. cordata bioactive compounds as anti-SARS-CoV-2 drug candidate molecules against the target enzyme.

9.
PLoS One ; 16(7): e0254035, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34260631

RESUMO

Ficus carica L., commonly known as fig, has been used in traditional medicine for metabolic disorders, cardiovascular diseases, respiratory diseases and cancer. Various bioactive compounds have been previously isolated from the leaves, fruit, and bark, which have different pharmacological properties, but the anticancer mechanisms of this plant are not known. In the current study we focused on understanding the probable mechanisms underlying the anticancer activity of F. carica plant extracts by molecular docking and dynamic simulation approaches. We evaluated the drug-likeness of the active constituents of the plant and explored its binding affinity with selected anticancer drug target receptors such as cyclin-dependent kinase 2 (CDK-2), cyclin-dependent kinase 6 (CDK-6), topoisomerase-I (Topo I), topoisomerase-II (Topo II), B-cell lymphoma 2 (Bcl-2), and vascular endothelial growth factor receptor 2 (VEGFR-2). In silico toxicity studies revealed that thirteen molecules out of sixty-eight major active compounds in the plant extract have acceptable drug-like properties. Compound 37 (ß-bourbonene) has a good binding affinity with the majority of drug targets, as revealed by molecular docking studies. The complexes of the lead molecules with the drug receptors were stable in terms of molecular dynamics simulation derived parameters such as root mean square deviation and radius of gyration. The top ten residues contributing significantly to the binding free energies were deciphered through analysis of molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) and molecular mechanics generalized Born surface area (MM-GBSA). Thus, the results of our studies unravel the potential of F. carica bioactive compounds as anticancer candidate molecules against selected macromolecular receptors.


Assuntos
Antineoplásicos , Ficus , Simulação de Acoplamento Molecular , Sítios de Ligação , Humanos , Interações Hidrofóbicas e Hidrofílicas
10.
ACS Omega ; 6(18): 12318-12330, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34056384

RESUMO

Two types of NiO-based composites (NiO@diatomite and Ni/NiO@diatomite) were synthesized as modified products of enhanced catalytic performances during the transesterification reactions of waste cooking oil. The influence of the diatomite substrate and the integration of metallic Ni0 in inducing the catalytic activity were evaluated in a series of transesterification reactions. The experimental conditions were adjusted according to the response surface methodology and the central composite statistical design. Experimentally, the diatomite substrate and the Ni0 metal induced the efficiency of the reaction to achieve a yield of 73.4% (NiO@diatomite) and 91% (Ni/NiO@diatomite), respectively, as compared to 66% for the pure phase (NiO). This was obtained under experimental conditions of 80 °C temperature, 100 min time, 12:1 methanol/oil molar ratio, and 3.75 wt % loading. The theoretical optimization functions of the designs suggested enhancement to the experimental conditions to achieve a yield of 76.3% by NiO@diatomite and 93.2% by Ni/NiO@diatomite. This reflected the role of the diatomite substrate in enhancing the surface area, the adsorption of fatty acids, and the exposure of the catalytic sites in addition to the effect of the Ni0 metal in enhancing the catalytic reactivity of the final product. Finally, the biodiesel produced over Ni/NiO@diatomite as the best product was of acceptable properties according to the international standards.

11.
Phytother Res ; 35(11): 6170-6180, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33908658

RESUMO

It is widely known that breast cancer cells eventually develop resistance to hormonal drugs and chemotherapies, which often compromise fertility. This study aimed to investigate the effect of the flavonoid, kaempferol-3-O-apiofuranosyl-7-O-rhamnopyranosyl (KARP), on 1) the viability of MCF-7 breast cancer cells and 2) ovarian function in rats. A dose-dependent decrease in MCF-7 cell survival was observed, and the IC50 value was found to be 48 µg/ml. Cells in the control group or those exposed to increasing concentrations of KARP experienced a similar generation of reactive oxygen species and induction of apoptosis. For the rats, estradiol levels correlated negatively to KARP dosages, although a recovery was obtained at administration of 30 mg/kg per day. Noteworthily, when compared against the control, this dosage led to significant increases in mRNA levels for CYP19, CYP17a, CCND2, GDF9, and INSL3 among the treatment groups, and ER1 and ER2 mRNA levels decreased in a dose-dependent manner. KARP shows great promise as an ideal therapy for breast cancer patients since it induced apoptosis and autophagy in cancerous cells without harming fertility in our animal model. Future investigations on humans are necessary to substantiate these findings and determine its efficacy as a general line of treatment.


Assuntos
Neoplasias da Mama , Flavonoides , Animais , Apoptose , Aromatase/genética , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Ciclina D2 , Feminino , Fator 9 de Diferenciação de Crescimento/genética , Humanos , Insulina/genética , Quempferóis/farmacologia , Proteínas/genética , Ratos , Esteroide 17-alfa-Hidroxilase/genética
12.
Artigo em Inglês | MEDLINE | ID: mdl-33531925

RESUMO

Despite the commercial value of potassium bromate (KBrO3), it has been linked to many diseases including cancer. Capparis spinosa possesses exceptional ethnobotanical, pharmaceutical, and economic prominence by virtue of its bioactive components. The present study was designed to explore the protective role and antioxidant potential of ethanolic leaves extract of C. spinosa against the oxidative stress, genotoxicity, and apoptosis induced by KBrO3 in an experimental animal model. The results of the study revealed remarkable diminution in the levels of oxidative stress in all the treatment groups. C. spinosa extract attenuated the toxic effects of KBrO3 significantly (p < 0.05) in a time- and dose-dependent manner by restoring the normal levels of ROS and antioxidative enzymes in serum and liver tissues. The extract also abolished the oxidative DNA damage as it was evident in decreased frequency of micronuclei. A marked increase in viable cells was observed in annexin-V apoptosis assay. In conclusion, the findings of the present study demonstrate that ethanolic leaves extract of C. spinosa has considerable protective effects against KBrO3-induced toxicity in experimental mice which is attributed to its antioxidant activity. Therefore, leaves of C. spinosa could be used as a potential source of natural antioxidant and bioactive compounds.

13.
Hematol Oncol Stem Cell Ther ; 14(3): 169-178, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32888899

RESUMO

Saudi Arabia is the largest of the Arabian Gulf countries with a total population of 33.41 million as of 2017. This report summarizes the experience from four leading tertiary care hematopoietic stem cell transplantation (HSCT) centers in Saudi Arabia representing more than 90% of all HSCTs performed in the country. Between 1984 and 2016, a total of 6,184 HSCTs were performed. Of these, 3,586 HSCTs were performed in adults and 2,598 HSCTs were performed in pediatric patients. Malignancy was the main indication for transplantation (47%). While most transplants were performed from an identical sibling donor, HSCTs from cord blood, unrelated and, more recently, haploidentical donors have also been performed. Relative shortage of HSCT bed capacity is perceived to be a limiting factor in Saudi Arabia. Lately, more HSCT centers are emerging with rapid growth, which may significantly improve the access to HSCT in the country in the near future.


Assuntos
Transplante de Células-Tronco Hematopoéticas/história , Atenção Terciária à Saúde/história , Doadores de Tecidos , Condicionamento Pré-Transplante/história , História do Século XX , História do Século XXI , Humanos , Arábia Saudita
14.
Pharm Biol ; 59(1): 941-952, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35294328

RESUMO

CONTEXT: Traditionally, Inula racemosa Hook. f. (Asteraceae) has been reported to be effective in cancer treatment which motivated the authors to explore the plant for novel anticancer compounds. OBJECTIVE: To isolate and characterize new cytotoxic phytoconstituents from I. racemosa roots. MATERIALS AND METHODS: The column chromatography of I. racemosa ethyl acetate extract furnished a novel sesquiterpene lactone whose structure was established by NMR (1D/2D), ES-MS and its cytotoxic properties were assessed on HeLa, MDAMB-231, and A549 cell lines using MTT and LDH (lactate dehydrogenase) assays. Further, morphological changes were analyzed by flow cytometry, mitochondrial membrane potential, AO-EtBr dual staining, and comet assay. Molecular docking and simulation were performed using Glide and Desmond softwares, respectively, to validate the mechanism of action. RESULTS: The isolated compound was identified as racemolactone I (compound 1). Amongst the cell lines tested, considerable changes were observed in HeLa cells. Compound 1 (IC50 = 0.9 µg/mL) significantly decreased cell viability (82%) concomitantly with high LDH release (76%) at 15 µg/mL. Diverse morphological alterations along with significant increase (9.23%) in apoptotic cells and decrease in viable cells were observed. AO-EtBr dual staining also confirmed the presence of 20% apoptotic cells. A gradual decrease in mitochondrial membrane potential was observed. HeLa cells showed significantly increased comet tail length (48.4 µm), indicating broken DNA strands. In silico studies exhibited that compound 1 binds to the active site of Polo-like kinase-1 and forms a stable complex. CONCLUSIONS: Racemolactone I was identified as potential anticancer agent, which can further be confirmed by in vivo investigations.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Inula/química , Lactonas/farmacologia , Sesquiterpenos/farmacologia , Células A549 , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células HeLa , Humanos , Lactonas/administração & dosagem , Lactonas/isolamento & purificação , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Simulação de Acoplamento Molecular , Raízes de Plantas , Sesquiterpenos/administração & dosagem , Sesquiterpenos/isolamento & purificação
15.
Saudi J Biol Sci ; 27(10): 2674-2682, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32837219

RESUMO

Coronaviruses with the largest viral genomes are positive-sense RNA viruses associated with a history of global epidemics such as the severe respiratory syndrome (SARS), the Middle East respiratory syndrome (MERS) and recently the coronavirus disease 2019 (COVID-19). There has been no vaccines or drugs available for the treatment of human coronavirus infections to date. In the present study, we have explored the possibilities of FDA approved drugs as potential inhibitors of the coronavirus main protease, a therapeutically important drug target playing a salient role in the maturation and processing of the viral polyproteins and are vital for viral replication and transcription. We have used molecular docking approach and have successfully identified the best lead molecules for each enzyme target. Interestingly, the anti-migraine drugs such as ergotamine and its derivative, dihydroergotamine were found to bind to all the three target enzymes within the Cys-His catalytic dyad cleft with lower binding energies as compared to the control inhibitors (α-ketoamide 13b, SG85 and GC813) and the molecules are held within the pocket through a good number of hydrogen bonds and hydrophobic interactions. Hence both these lead molecules can be further taken for wet-lab experimentation studies before repurposing them as anti-coronaviral drug candidates.

16.
Eur J Radiol ; 130: 109146, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32673929

RESUMO

PURPOSE: Breast cancer affects a significant number of patients younger than 40 years in the Gulf and breast conservative treatment is highly preferred. Pathological complete response (pCR) following neoadjuvant chemotherapy is increasingly being observed with the new chemotherapy agents. Although MRI is more accurate in such evaluations, digital mammography and high-resolution ultrasound (US) which are less expensive may accurately predict pCR which is the focus of this study. METHODS: A 6-year retrospective study of 93 breast cancer cases who had neoadjuvant chemotherapy and had presurgical radiological localization was carried out. Forty-five had US localization while 48 underwent mammographic localization when US failed to define any residual mass. Radiologic complete response (rCR) was defined as absence of mass with only postbiopsy clip overlying normal breast parenchyma pattern in US and in mammography (clip sign). Mass or abnormal parenchymal pattern was considered as residual tumor. The pathology reports of pCR or not with background changes were recorded. RESULTS: Ultrasound localization correctly predicted 42 out of 43 pathologic masses with 98 % accuracy. Mammographic localization correctly predicted 40 out of 43 pCR with 93 % accuracy. The best responders were triple negative and HER2 positive hormone negative breast cancer. CONCLUSION: The study defines radiologic complete response (rCR) as absence of a mass with the postbiopsy tissue marker overlying a normal-looking breast parenchyma in both ultrasound and mammographic evaluation. A correlation of 93 % was found with pCR. The few false negative cases were associated with overlying dense breast and possibly post treatment reaction. Allocation of a BI-RADS category for rCR is suggested.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Mamografia/métodos , Terapia Neoadjuvante/métodos , Cuidados Pré-Operatórios/métodos , Ultrassonografia Mamária/métodos , Antineoplásicos/uso terapêutico , Mama/diagnóstico por imagem , Mama/patologia , Neoplasias da Mama/patologia , Feminino , Humanos , Reprodutibilidade dos Testes , Estudos Retrospectivos , Resultado do Tratamento
17.
Saudi J Biol Sci ; 27(7): 1907-1911, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32565713

RESUMO

Adenium obesum (Forssk.) Roem. & Schult. is a promising medicinal plant belonging to the Apocynaceae family. It is a rich source of various phytochemicals such as cardiac glycosides, flavonoids, terpeniods, pregnanes etc. which have different pharmacological properties such as anticancer, antibacterial, acaricidal etc. While previous reports showed the anticancer activity of the aerial parts of the plant extract of A. obesum, the mechanisms of action of its chemical constituents are not known. The present study is aimed at elucidation of plausible mechanisms of anticancer activity of the plant by evaluating the binding interaction of its nine major selected compounds with macromolecular receptors implicated in the initiation and progression of cancer using various in silico approaches. Molecular docking results showed that the compound Δ16-3-Acetyldigitoxigenin (16-anhydro-3-acetylgitoxigenin) scored the best binding energy scores with the majority of the target proteins. The molecular binding of the compound was stabilized through hydrogen bonds as well as hydrophobic interactions, and also possesses favorable drug-like properties without significant toxicities.

18.
Life Sci ; 255: 117831, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32450166

RESUMO

A new SARS coronavirus (SARS-CoV-2) belonging to the genus Betacoronavirus has caused a pandemic known as COVID-19. Among coronaviruses, the main protease (Mpro) is an essential drug target which, along with papain-like proteases catalyzes the processing of polyproteins translated from viral RNA and recognizes specific cleavage sites. There are no human proteases with similar cleavage specificity and therefore, inhibitors are highly likely to be nontoxic. Therefore, targeting the SARS-CoV-2 Mpro enzyme with small molecules can block viral replication. The present study is aimed at the identification of promising lead molecules for SARS-CoV-2 Mpro enzyme through virtual screening of antiviral compounds from plants. The binding affinity of selected small drug-like molecules to SARS-CoV-2 Mpro, SARS-CoV Mpro and MERS-CoV Mpro were studied using molecular docking. Bonducellpin D was identified as the best lead molecule which shows higher binding affinity (-9.28 kcal/mol) as compared to the control (-8.24 kcal/mol). The molecular binding was stabilized through four hydrogen bonds with Glu166 and Thr190 as well as hydrophobic interactions via eight residues. The SARS-CoV-2 Mpro shows identities of 96.08% and 50.65% to that of SARS-CoV Mpro and MERS-CoV Mpro respectively at the sequence level. At the structural level, the root mean square deviation (RMSD) between SARS-CoV-2 Mpro and SARS-CoV Mpro was found to be 0.517 Å and 0.817 Å between SARS-CoV-2 Mpro and MERS-CoV Mpro. Bonducellpin D exhibited broad-spectrum inhibition potential against SARS-CoV Mpro and MERS-CoV Mpro and therefore is a promising drug candidate, which needs further validations through in vitro and in vivo studies.


Assuntos
Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/enzimologia , Infecções por Coronavirus/tratamento farmacológico , Extratos Vegetais/farmacologia , Pneumonia Viral/tratamento farmacológico , Proteínas não Estruturais Virais/antagonistas & inibidores , Sequência de Aminoácidos , Antivirais/química , Betacoronavirus/metabolismo , Sítios de Ligação , COVID-19 , Simulação por Computador , Proteases 3C de Coronavírus , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Simulação de Acoplamento Molecular , Pandemias , Pneumonia Viral/epidemiologia , Pneumonia Viral/virologia , Inibidores de Proteases/química , Ligação Proteica , SARS-CoV-2 , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
19.
Curr Pharm Biotechnol ; 21(9): 842-851, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31995002

RESUMO

BACKGROUND: Estrogen Receptors (ER) are members of the nuclear intracellular receptors family. ER once activated by estrogen, it binds to DNA via translocating into the nucleus and regulates the activity of various genes. Withaferin A (WA) - an active compound of a medicinal plant Withania somnifera was reported to be a very effective anti-cancer agent and some of the recent studies has demonstrated that WA is capable of arresting the development of breast cancer via targeting estrogen receptor. OBJECTIVE: The present study is aimed at understanding the molecular level interactions of ER and Tamoxifen in comparison to Withaferin A using In-silico approaches with emphasis on Withaferin A binding capability with ER in presence of point mutations which are causing de novo drug resistance to existing drugs like Tamoxifen. METHODS: Molecular modeling and docking studies were performed for the Tamoxifen and Withaferin A with the Estrogen receptor. Molecular docking simulations of estrogen receptor in complex with Tamoxifen and Withaferin A were also performed. RESULTS: Amino acid residues, Glu353, Arg394 and Leu387 was observed as crucial for binding and stabilizing the protein-ligand complex in case of Tamoxifen and Withaferin-A. The potential of Withaferin A to overcome the drug resistance caused by the mutations in estrogen receptor to the existing drugs such as Tamoxifen was demonstrated. CONCLUSION: In-silico analysis has elucidated the binding mode and molecular level interactions which are expected to be of great help in further optimizing Withaferin A or design / discovery of future breast cancer inhibitors targeting estrogen receptor.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/metabolismo , Receptores de Estrogênio/antagonistas & inibidores , Withania/química , Vitanolídeos/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Simulação por Computador , Humanos , Ligantes , Simulação de Acoplamento Molecular , Plantas Medicinais , Mutação Puntual , Ligação Proteica , Receptores de Estrogênio/genética , Vitanolídeos/isolamento & purificação
20.
Drug Chem Toxicol ; 43(2): 158-164, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30203996

RESUMO

The present study was conducted to demonstrate cytotoxicity, apoptosis and hepatic damage induced by gemcitabine in laboratory mice. Animals were treated with a single dose of gemcitabine (415 mg/kg body wt), equivalent to a human therapeutic dose, and sacrificed after 1, 2 and 3 weeks. A significant decrease in mean body weight and absolute liver weight was registered. The levels of alkaline phosphatase (ALP), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were increased as a result of this induced stress. Various structural changes were observed in the liver tissue of treated mice, as evident in the histological sections. Specifically, gemcitabine exposure was able to induce apoptosis in liver cells, and the incidence of TUNEL positive liver cells was increased compared to the control group. DNA fragmentation appeared on agarose gel and flow cytometry analysis confirmed the induction of apoptosis. These findings in gemcitabine-treated animal tissues suggest that inhibition or disruption of cells' DNA synthesis may be the mechanism by which this drug induces toxicity in the animal body.


Assuntos
Antimetabólitos Antineoplásicos/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Dano ao DNA/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Animais , Apoptose/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/fisiopatologia , Fragmentação do DNA/efeitos dos fármacos , Desoxicitidina/toxicidade , Marcação In Situ das Extremidades Cortadas , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/patologia , Masculino , Camundongos , Fatores de Tempo , Gencitabina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA