Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 651: 123749, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38159587

RESUMO

Polycystic ovary syndrome (PCOS), a prevalent endocrine disorder in women of reproductive age, is linked to hormonal imbalances and oxidative stress. Our study investigates the regenerative potential of apigenin (AP, hydrophobic) and ascorbic acid (AC, hydrophilic) encapsulated within poly (allylamine hydrochloride) and dextran sulfate (PAH/DS) hollow microcapsules for PCOS. These microcapsules, constructed using a layer-by-layer (LbL) assembly, are found to be 4 ± 0.5 µm in size. Our research successfully demonstrates the co-encapsulation of AP and AC in a single PAH/DS system with high encapsulation efficiency followed by successful release at physiological conditions by CLSM investigations. In vitro tests with testosterone-treated CHO cells reveal that the dual-drug-loaded PAH/DS capsules effectively reduce intracellular ROS levels and apoptosis and offering protection. In an in-vivo zebrafish model, these capsules demonstrate active biodistribution to targeted ovaries and reduce testosterone levels through radical scavenging. Histopathological examinations show that the injected dual-drug-loaded PAH/DS microcapsules assist in the development of ovarian follicles in testosterone-treated zebrafish. Hence, this dual-drug-loaded system, capable of co-encapsulating two natural compounds, effectively interacts with ovarian cells, reducing cellular damage and normalizing PCOS conditions.


Assuntos
Síndrome do Ovário Policístico , Animais , Cricetinae , Feminino , Humanos , Polieletrólitos , Síndrome do Ovário Policístico/tratamento farmacológico , Apigenina , Peixe-Zebra , Cápsulas/química , Ácido Ascórbico , Distribuição Tecidual , Cricetulus , Testosterona
2.
Tissue Cell ; 85: 102259, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37922675

RESUMO

BACKGROUND: Cigarette smoke exposure poses significant health risks, including oxidative stress, inflammation, tissue damage, and neurodegenerative diseases. Luteolin, a natural flavonoid known for its antioxidant and anti-inflammatory properties, is of interest in countering these effects. AIM: This study aims to assess luteolin's protective potential against cigarette smoke extract (CSE) in adult zebrafish. MATERIALS AND METHODS: Adult zebrafish were exposed to CSE for 15 days, inducing smoke-related damage. Subsequent luteolin treatment assessed its impact. Evaluations included antioxidant enzymes (SOD, CAT), nitric oxide (NO), LDH activity (cellular damage), tissue integrity, fibrosis, amyloid plaque accumulation, and CSE component analysis via HPLC. KEY FINDINGS: CSE exposure heightened oxidative stress, reducing SOD and CAT activity and elevating NO levels, leading to cellular damage and tissue disruption, notably fibrosis and amyloid plaque accumulation. Inflammatory markers TNF-α and IL-1ß also increased. Luteolin treatment restored SOD and CAT activity, reduced LDH and NO activity, counteracting oxidative damage. It also mitigated fibrosis and reduced amyloid plaque deposition, preserving tissue integrity. Luteolin reduced TNF-α and IL-1ß levels and CSE components, displaying anti-inflammatory effects. SIGNIFICANCE: This study underscores luteolin's potential as a protective agent against cigarette smoke-induced harm in a zebrafish model.


Assuntos
Antioxidantes , Fumar Cigarros , Animais , Antioxidantes/farmacologia , Peixe-Zebra , Luteolina/farmacologia , Fator de Necrose Tumoral alfa , Placa Amiloide , Anti-Inflamatórios/farmacologia , Nicotiana/efeitos adversos , Superóxido Dismutase , Fibrose
3.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37895875

RESUMO

The effectiveness of all antibiotics in the ß-lactam group to cure bacterial infections has been impaired by the introduction of the New Delhi Metallo-ß-lactamase (NDM-1) enzyme. Attempts have been made to discover a potent chemical as an inhibitor to this enzyme in order to restore the efficacy of antibiotics. However, it has been a challenging task to develop broad-spectrum inhibitors of metallo-ß-lactamases. Lack of sequence homology across metallo-ß-lactamases (MBLs), the rapidly evolving active site of the enzyme, and structural similarities between human enzymes and metallo-ß-lactamases, are the primary causes for the difficulty in the development of these inhibitors. Therefore, it is imperative to concentrate on the discovery of an effective NDM-1 inhibitor. This study used various in silico approaches, including molecular docking and molecular dynamics simulations, to investigate the potential of phytochemicals to inhibit the NDM-1 enzyme. For this purpose, a library of about 59,000 phytochemicals was created from the literature and other databases, including FoodB, IMPPAT, and Phenol-Explorer. A physiochemical and pharmacokinetics analysis was performed to determine possible toxicity and mutagenicity of the ligands. Following the virtual screening, phytochemicals were assessed for their binding with NDM-1using docking scores, RMSD values, and other critical parameters. The docking score was determined by selecting the best conformation of the protein-ligand complex. Three phytochemicals, i.e., butein (polyphenol), monodemethylcurcumin (polyphenol), and rosmarinic acid (polyphenol) were identified as result of pharmacokinetics and molecular docking studies. Furthermore, molecular dynamics simulations were performed to determine structural stabilities of the protein-ligand complexes. Monodemethylcurcumin, butein, and rosmarinic acid were identified as potential inhibitors of NDM-1 based on their low RMSD, RMSF, hydrogen bond count, average Coulomb-Schrödinger interaction energy, and Lennard-Jones-Schrödinger interaction energy. The present investigation suggested that these phytochemicals might be promising candidates for future NDM-1 medication development to respond to antibiotic resistance.

4.
Pestic Biochem Physiol ; 193: 105447, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37248016

RESUMO

Bacterial leaf blight (BLB) pathogen, Xanthomonas oryzae pv. oryzae (Xoo) is the most devastating bacterial pathogen, which jeopardizes the sustainable rice (Oryza sativa L.) production system. The use of antibiotics and conventional pesticides has become ineffective due to increased pathogen resistance and associated ecotoxicological concerns. Thus, the development of effective and sustainable antimicrobial agents for plant disease management is inevitable. Here, we investigated the toxicity and molecular action mechanisms of bioengineered chitosan­iron nanocomposites (BNCs) against Xoo using transcriptomic and proteomic approaches. The transcriptomic and proteomics analyses revealed molecular antibacterial mechanisms of BNCs against Xoo. Transcriptomic data revealed that various processes related to cell membrane biosynthesis, antioxidant stress, DNA damage, flagellar biosynthesis and transcriptional regulator were impaired upon BNCs exposure, which clearly showing the interaction of BNCs to Xoo pathogen. Similarly, proteomic profiling showed that BNCs treatment significantly altered the levels of functional proteins involved in the integral component of the cell membrane, catalase activity, oxidation-reduction process and metabolic process in Xoo, which is consistent with the results of the transcriptomic analysis. Overall, this study suggested that BNCs has great potential to serve as an eco-friendly, sustainable, and non-toxic alternative to traditional agrichemicals to control the BLB disease in rice.


Assuntos
Quitosana , Oryza , Xanthomonas , Transcriptoma , Quitosana/farmacologia , Quitosana/metabolismo , Ferro/farmacologia , Ferro/metabolismo , Proteômica/métodos , Xanthomonas/metabolismo , Antibacterianos , Oryza/metabolismo , Doenças das Plantas/microbiologia
5.
RSC Adv ; 12(12): 7237-7252, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35424659

RESUMO

Pesticide overuse can have negative effects on developmental processes of non-target host plants. By increasing reactive oxygen species (ROS) levels, pesticides negatively affect cellular metabolism, biochemistry and physiological machinery of plants. Considering these problems, the current study was planned to assess the effect of three different groups of pesticides, namely diazinon (DIZN), imidacloprid (IMID) and mancozeb (MNZB) on Solanum lycopersicum L. (tomato). In general, pesticides resulted in a progressive decrease in physiological and biometric parameters of S. lycopersicum (L.), which varies significantly among concentrations and species of pesticides. Among them, 200 µgMNZB mL-1 had the most severe negative impact and reduced germination rate, root biomass, chl a, chl b, total chlorophyll and carotenoids by 62, 87, 90, 88, 92 and 90%, respectively. In addition, higher doses of pesticides greatly reduced the flowering, fruit attributes and lycopene content. Furthermore, plants exposed to 200 µgDIZN mL-1 showed a progressive drop in root cell viability (54% decrease), total soluble sugar (TSS) (64% decrease) and total soluble protein (TSP) (67% decrease) content. Data analysis indicated that greater doses of pesticides dramatically raised ROS levels and induced membrane damage through production of thiobarbituric acid reactive substances (TBARS), as well as increased cell injury. To deal with pesticide-induced oxidative stress, plants subjected to greater pesticide dosages, showed a substantial increase in antioxidant levels. For instance, ascorbate peroxidase (APX), catalase (CAT), superoxide dismutase (SOD), peroxidase (POD) and guaiacol peroxidase (GPX) were maximally increased by 48, 93, 71, 52 and 94%, respectively following 200 µgMNZB mL-1 soil exposures. Additionally, under a confocal laser scanning microscope (CLSM), pesticide exposed S. lycopersicum (L.) roots stained with 2',7'-dichlorodihydrofluorescein diacetate (2'7'-DCF) and 3,3'-diaminobenzidine, exhibited an increased ROS production in a concentration-dependent manner. Further, elevated pesticide concentrations resulted in alterations in mitochondrial membrane potential (ΔΨ m) and cellular death in roots, as evidenced by increased Rhodamine 123 (Rhd 123) and Evan's blue fluorescence, respectively. These findings clearly showed that applying pesticides in excess of permissible amounts might induce oxidative stress and cause oxidative damage in non-target host plants. Overall, the current study indicates that a thorough and secure method be used before selecting pesticides for increasing production of agronomically important vegetable crops in various agro-climatic zones.

6.
Antioxidants (Basel) ; 10(8)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34439555

RESUMO

Plant-derived antioxidants are a large group of natural products with the capacity to reduce radical-scavenging. Due to their potent therapeutic and preventive actions, these compounds receive a lot of attention from scientists, particularly pharmacologists. The pharmacological activities of the Azima tetracantha Lam. (AT) plant, belonging to the Salvadoraceae family, reported here justifies its traditional use in treating several diseases or disorders. This study aims to look at the propensity of certain plant compounds found in natural AT plant extracts that might play a critical role as a secondary metabolite in cervical cancer treatment. There is a shortage of information on the plant's phytochemical and biological characteristics. Methanol (MeOH) solvent extracts of the dried AT plant were screened phytochemically. Its aqueous extract was tested for antioxidant, antiseptic, anti-inflammatory, and anticancerous properties. Absorption Distribution Metabolism and Excretion (ADME/T), Docking, and HPLC were also performed. In clinical treatment, the plant shown no adverse effects. The antioxidant activity was evaluated and showed the highest concentration at 150 µg/mL (63.50%). MeOH leaf extract of AT exhibited the highest and best inhibitory activity against Staphylococcus aureus (15.3 mm/1000) and displayed a high antiseptic potential. At a 200 µg/mL concentration, MeOH leaves-extract inhibited red blood cells (RBC) hemolysis by 66.56 ± 0.40, compared with 62.33 ± 0.40 from the standard. Albumin's ability to suppress protein denaturation ranged from 16.75 ± 0.65 to 62.35 ± 0.20 inhibitions in this test, providing even more support for its favorable anti-inflammatory properties. The ADME/T studies were considered for a potential cancer drug molecule, and one of our compounds from MeOH extract fills the ADME and toxicity parameters. The forms of compound 4 showed a strong hydrogen-bonding interaction with the vital amino acids (ASN923, THR410, LEU840TRY927, PHE921, and GLY922). A total of 90% of cell inhibition was observed when HeLa cell lines were treated with 300 µg/mL of compound 4 (7-acetyl-3a1-methyl- 4,14-dioxo-1,2,3a,3a1,4,5,5a,6,8a,9b,10,11,11a-tetradecahydro-2,5a epoxy5,6a (methanooxymethano)phenaleno[1',9':5,6,7]indeno[1,7a-b]oxiren-2-yl acetate). The polyphenol compounds demonstrated significant advances in anticancer drug properties, and it could lead to activation of cancer cell apoptosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA