Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Redox Rep ; 29(1): 2365590, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38861483

RESUMO

Emodin is a naturally occurring anthraquinone derivative with a wide range of pharmacological activities, including neuroprotective and anti-inflammatory activities. We aim to assess the anticancer activity of emodin against hepatocellular carcinoma (HCC) in rat models using the proliferation, invasion, and angiogenesis biomarkers. After induction of HCC, assessment of the liver impairment and the histopathology of liver sections were investigated. Hepatic expression of both mRNA and protein of the oxidative stress biomarkers, HO-1, Nrf2; the mitogenic activation biomarkers, ERK5, PKCδ; the tissue destruction biomarker, ADAMTS4; the tissue homeostasis biomarker, aggregan; the cellular fibrinolytic biomarker, MMP3; and of the cellular angiogenesis biomarker, VEGF were measured. Emodin increased the survival percentage and reduced the number of hepatic nodules compared to the HCC group. Besides, emodin reduced the elevated expression of both mRNA and proteins of all PKC, ERK5, ADAMTS4, MMP3, and VEGF compared with the HCC group. On the other hand, emodin increased the expression of mRNA and proteins of Nrf2, HO-1, and aggrecan compared with the HCC group. Therefore, emodin is a promising anticancer agent against HCC preventing the cancer prognosis and infiltration. It works through many mechanisms of action, such as blocking oxidative stress, proliferation, invasion, and angiogenesis.


Assuntos
Proteína ADAMTS4 , Antioxidantes , Carcinoma Hepatocelular , Emodina , Neoplasias Hepáticas , Tioacetamida , Animais , Emodina/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/patologia , Ratos , Tioacetamida/toxicidade , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/patologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Proteína ADAMTS4/metabolismo , Masculino , Proteína Quinase C/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Antineoplásicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos
2.
Curr Alzheimer Res ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38766828

RESUMO

BACKGROUND: As individuals age, they may develop Alzheimer's disease (AD), which is characterized by difficulties in speech, memory loss, and other issues related to neural function. Cycloastragenol is an active ingredient of Astragalus trojanus and has been used to treat inflammation, aging, heart disease, and cancer. OBJECTIVES: This study aimed to explore the potential therapeutic benefits of cycloastragenol in rats with experimentally induced AD. Moreover, the underlying molecular mechanisms were also evaluated by measuring Nrf2 and HO-1, which are involved in oxidative stress, NFκB and TNF-α, which are involved in inflammation, and BCL2, BAX, and caspase-3, which are involved in apoptosis. METHODS: Sprague-Dawley rats were given 70 mg/kg of aluminum chloride intraperitoneally daily for six weeks to induce AD. Following AD induction, the rats were given 25 mg/kg of cycloastragenol daily by oral gavage for three weeks. Hippocampal sections were stained with hematoxylin/ eosin and with anti-caspase-3 antibodies. The Nrf2, HO-1, NFκB, TNF-α, BCL2, BAX, and caspase-3 gene expressions and protein levels in the samples were analyzed. RESULTS: Cycloastragenol significantly improved rats' behavioral test performance. It also strengthened the organization of the hippocampus. Cycloastragenol significantly improved behavioral performance and improved hippocampal structure in rats. It caused a marked decrease in the expression of NFκB, TNF-α, BAX, and caspase-3, which was associated with an increase in the expression of BCL2, Nrf2, and HO-1. CONCLUSION: Cycloastragenol improved the structure of the hippocampus in rats with AD. It enhanced the outcomes of behavioral tests, decreased the concentration of AChE in the brain, and exerted antioxidant and anti-inflammatory effects. Antiapoptotic effects were also noted, leading to significant improvements in cognitive function, memory, and behavior in treated rats.

3.
Biomol Biomed ; 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461536

RESUMO

Hepatocellular carcinoma (HCC) affects approximately 800,000 individuals globally each year. Despite advancements in HCC treatments, there is still a pressing need to identify new drugs that can combat resistance. One potential option is echinacoside, a natural caffeic acid glycoside with antioxidant, anti-inflammatory, antidepressant, and antidiabetic properties. Therefore, we aimed to investigate the ability of echinacoside to exhibit antitumor activity against HCC in rats through ameliorating hepatic fibrosis and tumor invasion. Rats were given thioacetamide to induce HCC, and some were given 30 mg/kg of echinacoside twice a week for 16 weeks. The liver impairment was assessed by measuring serum α-fetoprotein (AFP) and examining liver sections stained with Masson trichrome or anti-transforming growth factor (TGF)-ß1 antibodies. The hepatic expression of mRNA and protein levels of TGF-ß1, ß-catenin, SMAD4, matrix metalloproteinase-9 (MMP9), phosphoinositide 3-kinases (PI3K), mammalian target of rapamycin (mTOR), connective tissue growth factor 2 (CCN2), E-Cadherin, platelets derived growth factor (PDGF)-B and fascin were also analyzed. Echinacoside improved the survival rate of rats by decreasing serum AFP and the number of hepatic nodules. Examination of micro-images indicated that echinacoside can reduce fibrosis. It also significantly decreased the expression of TGF-ß1, ß-catenin, SMAD4, MMP9, PI3K, mTOR, CCN2, PDGF-B, and fascin while enhancing the expression of E-Cadherin. In conclusion, echinacoside exhibits a protective effect against HCC by increasing survival rates and decreasing tumor growth. It also acts as an inhibitor of the hepatic tissue fibrosis pathway by reducing the expression of TGF-ß1, ß-catenin, SMAD4, PI3K, CCN2, PDGF-B and mTOR. Additionally, it prevents tumor invasion by suppressing MMP9 and fascin, and increasing the expression of E-Cadherin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA