RESUMO
Erythropoietin (EPO) is widely used to treat anemia in patients undergoing chemotherapy for cancers. The main objective of this study was to investigate the effect of rHuEPO on the response of spheroid breast cancer, MCF-7, cells to tamoxifen treatment. The MCF-7 spheroids were treated with 10 mg/mL tamoxifen in combination with either 0, 10, 100 or 200 IU/mL rHuEPO for 24, 48 or 72 h. The viability of the MCF-7 cells was determined using the annexin-V, cell cycle, caspases activation and acridine orange/propidium iodide staining. rHuEPO-tamoxifen combination significantly (p greater than 0.05) increased the number of spheroid MCF-7 cells entering early apoptotic phase after 12 h and late apoptotic phase after 24 h of treatment; primarily the result of the antiproliferative effect tamoxifen. Tamoxifen alone significantly (p < 0.05) increased the caspase-3 and -9 activities in the spheroid MCF-7 cells by 200 to 550% of the control. Combination rHuEPO and tamoxifen produced much lesser effect on the caspase-8 activity. The rHuEPO in the combination treatment had concentration-dependently caused decrease in the caspase activities. rHuEPO-tamoxifen combination markedly increased MCF-7 cells entering the SubG0/G1 phase of the cell cycle by more than 500% of the control, while decreasing those entering the G2 + M and S phases by 50%. After 72 h, the combination treatment produced greater (p < 0.05) change in the SubG0/G1 phase than tamoxifen treatment alone. Morphologically, spheroid MCF-7 cells subjected to combination rHuEPO-tamoxifen treatment showed nuclear condensation and margination, cytoplasmic blebbing, necrosis, and early and late apoptosis. Thus, the study showed that rHuEPO-tamoxifen combination induced apoptosis in the spheroid MCF-7 cells. The apoptotic effect of the rHuEPO-tamoxifen combination treatment on the MCF-7 cells was greater than that produced by tamoxifen alone. The rHuEPO-tamoxifen treatment enhanced the caspase-independent apoptotic effects of tamoxifen on the spheroid MCF-7 cells.
RESUMO
Recombinant human erythropoietin (rHuEPO) is the erythropoiesis-stimulating hormone that is being used concurrently with chemotherapeutic drugs in the treatment of anemia of cancer. The effect of rHuEPO on cancer cells in 3-dimensional (3D) cultures is not known. The objective of the study was to determine the effect of rHuEPO on the viability of MCF-7 breast cancer cells from 2-dimensional (2D) and 3D cell cultures. The monolayer MCF-7 cells from 2D culture and MCF-7 cell from 3D culture generated by ultra-low adhesive microplate technique, were treated with 0, 0.1, 10, 100 or 200 IU/mL rHuEPO for 24, 48 or 72 h. The effects of rHuEPO on MCF-7 cell viability and proliferation were determined using the (4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay (MTT), neutral red retention time (NRRT), trypan blue exclusion assay (TBE), DNA fragmentation, acridine orange/propidium iodide staining (AO/PI) assays. The MCF-7 cells for 3D culture were also subjected to caspase assays and cell cycle analysis using flow cytometry. rHuEPO appeared to have greater effect at lowering the viability of MCF-7 cells from 3D than 2D cultures. rHuEPO significantly (p < 0.05) decreased viability and down-regulated the caspase activities of 3D MCF-7 cells in dose- and time-dependent manner. The cell cycle analysis showed that rHuEPO caused MCF-7 cells to enter the subG0/G1 phase. Thus, the study suggests that rHuEPO has a cytostatic effect on the MCF-7 breast cancer cells from 3D culture.
RESUMO
The aim of this study was to prepare, characterize, and determine the in vitro anticancer effects of platinum-doped magnesia (Pt/MgO) nanoparticles. The chemical compositions, functional groups, and size of nanoparticles were determined using X-ray diffraction, Fourier transform infrared spectroscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, and scanning electron microscopy. Pt/MgO nanoparticles were cuboid and in the nanosize range of 30-50 nm. The cytotoxicity of Pt/MgO nanoparticles was determined via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay on the human lung and colonic cancer cells (A549 and HT29 respectively) and normal human lung and colonic fibroblasts cells (MRC-5 and CCD-18Co repectively). The Pt/MgO nanoparticles were relatively innocuous to normal cells. Pt/MgO nanoparticles downregulated Bcl-2 and upregulated Bax and p53 tumor suppressor proteins in the cancer cells. Pt/MgO nanoparticles also induced production of reactive oxygen species, decreased cellular glutathione level, and increased lipid peroxidation. Thus, the anticancer effects of Pt/MgO nanoparticles were attributed to the induction of oxidative stress and apoptosis. The study showed the potential of Pt/MgO nanoparticles as an anti-cancer compound.
Assuntos
Citotoxinas/toxicidade , Óxido de Magnésio/toxicidade , Nanopartículas Metálicas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Platina/toxicidade , Células A549 , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Células HT29 , Humanos , Mediadores da Inflamação/metabolismo , Estresse Oxidativo/fisiologiaRESUMO
Erythropoietin receptors (EPORs) are present not only in erythrocyte precursors but also in non-hematopoietic cells including cancer cells. In this study, we determined the effect of fetal bovine serum (FBS) in culture medium on the EPOR expression and viability of the estrogen receptor (ER)-positive MCF-7 and ER-negative MDA-MB-231 breast cancer cells. Using flow cytometry, we showed that the inclusion of 10% FBS in the medium increased the EPOR expressions and viabilities of MDA-MB-231 and MCF-7 cells. The MDA-MB-231 showed greater EPOR expression than MCF-7 cells, suggesting that the presence of ERs on cells is associated with poor expression of EPOR. Culture medium containing 10% FBS also caused increased number of breast cancer cells entering the synthesis phase of the cell cycle. The study also showed that rHuEPO treatment did not affect viability of breast cancer cells. In conclusion, it was shown that the inclusion of FBS in culture medium increased expression of EPOR in breast cancer cells and rHuEPO treatment had no effect on the proliferation of these cancer cells.