Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microrna ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38778602

RESUMO

Due to its non-invasive nature and easy accessibility, urine serves as a convenient bi-ological fluid for research purposes. Furthermore, urine samples are uncomplicated to preserve and relatively inexpensive. MicroRNA (miRNAs), small molecules that regulate gene expression post-transcriptionally, play vital roles in numerous cellular processes, including apoptosis, cell differentiation, development, and proliferation. Their dysregulated expression in urine has been proposed as a potential bi-omarker for various human diseases, including bladder cancer. To draw reliable conclusions about the roles of urinary miRNAs in human diseases, it is essential to have dependable and reproducible methods for miRNA extraction and profiling. In this review, we address the technical challenges associated with studying urinary miRNAs and provide an update on the current technologies used for urinary miRNA isolation, quality control assessment, and miRNA profiling, highlighting both their advantages and limitations.

2.
J Transl Med ; 18(1): 192, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393282

RESUMO

BACKGROUND: Most mutations in melanoma affect one critical amino acid on BRAF gene, resulting in the V600E substitution. Patient management is often based on the use of specific inhibitors targeting this mutation. METHODS: DNA and RNA mutation status was assessed in 15 melanoma cell lines by Sanger sequencing and RNA-seq. We tested the cell lines responsiveness to BRAF inhibitors (vemurafenib and PLX4720, BRAF-specific and sorafenib, BRAF non-specific). Cell proliferation was assessed by MTT colorimetric assay. BRAF V600E RNA expression was assessed by qPCR. Expression level of phosphorylated-ERK protein was assessed by Western Blotting as marker of BRAF activation. RESULTS: Three cell lines were discordant in the mutation detection (BRAF V600E at DNA level/Sanger sequencing and BRAF WT on RNA-seq). We initially postulated that those cell lines may express only the WT allele at the RNA level although mutated at the DNA level. A more careful analysis showed that they express low level of BRAF RNA and the expression may be in favor of the WT allele. We tested whether the discordant cell lines responded differently to BRAF-specific inhibitors. Their proliferation rate decreased after treatment with vemurafenib and PLX4720 but was not affected by sorafenib, suggesting a BRAF V600E biological behavior. Yet, responsiveness to the BRAF specific inhibitors was lower as compared to the control. Western Blot analysis revealed a decreased expression of p-ERK protein in the BRAF V600E control cell line and in the discordant cell lines upon treatment with BRAF-specific inhibitors. The discordant cell lines showed a lower responsiveness to BRAF inhibitors when compared to the BRAF V600E control cell line. The results obtained from the inhibition experiment and molecular analyses were also confirmed in three additional cell lines. CONCLUSION: Cell lines carrying V600E mutation at the DNA level may respond differently to BRAF targeted treatment potentially due to a lower V600E RNA expression.


Assuntos
Melanoma , Proteínas Proto-Oncogênicas B-raf , Linhagem Celular Tumoral , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Mutação/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Vemurafenib/farmacologia
3.
J Transl Med ; 17(1): 112, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30953523

RESUMO

BACKGROUND: Monoallelic expression (MAE) is a frequent genomic phenomenon in normal tissues, however its role in cancer is yet to be fully understood. MAE is defined as the expression of a gene that is restricted to one allele in the presence of a diploid heterozygous genome. Constitutive MAE occurs for imprinted genes, odorant receptors and random X inactivation. Several studies in normal tissues have showed MAE in approximately 5-20% of the cases. However, little information exists on the MAE rate in cancer. In this study we assessed the presence and rate of MAE in melanoma. The genetic basis of melanoma has been studied in depth over the past decades, leading to the identification of mutations/genetic alterations responsible for melanoma development. METHODS: To examine the role of MAE in melanoma we used 15 melanoma cell lines and compared their RNA-seq data with genotyping data obtained by the parental TIL (tumor infiltrating lymphocytes). Genotyping was performed using the Illumina HumanOmni1 beadchip. The RNA-seq library preparation and sequencing was performed using the Illumina TruSeq Stranded Total RNA Human Kit and subsequently sequenced using a HiSeq 2500 according to manufacturer's guidelines. By comparing genotyping data with RNA-seq data, we identified SNPs in which DNA genotypes were heterozygous and corresponding RNA genotypes were homozygous. All homozygous DNA genotypes were removed prior to the analysis. To confirm the validity to detect MAE, we examined heterozygous DNA genotypes from X chromosome of female samples as well as for imprinted and olfactory receptor genes and confirmed MAE. RESULTS: MAE was detected in all 15 cell lines although to a different rate. When looking at the B-allele frequencies we found a preferential pattern of complete monoallelic expression rather then differential monoallelic expression across the 15 melanoma cell lines. As some samples showed high differences in the homozygous and heterozygous call rate, we looked at the single chromosomes and showed that MAE may be explained by underlying large copy number imbalances in some instances. Interestingly these regions included genes known to play a role in melanoma initiation and progression. Nevertheless, some chromosome regions showed MAE without CN imbalances suggesting that additional mechanisms (including epigenetic silencing) may explain MAE in melanoma. CONCLUSION: The biological implications of MAE are yet to be realized. Nevertheless, our findings suggest that MAE is a common phenomenon in melanoma cell lines. Further analyses are currently being undertaken to evaluate whether MAE is gene/pathway specific and to understand whether MAE can be employed by cancers to achieve a more aggressive phenotype.


Assuntos
Impressão Genômica/fisiologia , Melanoma/genética , Neoplasias Cutâneas/genética , Alelos , Linhagem Celular Tumoral , Hibridização Genômica Comparativa , Epigênese Genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Frequência do Gene , Genótipo , Heterozigoto , Homozigoto , Humanos , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Melanoma/patologia , Análise em Microsséries , Polimorfismo de Nucleotídeo Único , Neoplasias Cutâneas/patologia
4.
Mol Oncol ; 9(1): 93-104, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25174651

RESUMO

BACKGROUND: The existence of a dichotomy between immunologically active and quiescent tumor phenotypes has been recently recognized in several types of cancer. The activation of a Th1 type of immune signature has been shown to confer better prognosis and likelihood to respond to immunotherapy. However, whether such dichotomy depends on the genetic make-up of individual cancers is not known yet. BRAF and NRAS mutations are commonly acquired during melanoma progression. Here we explored the role of BRAF and NRAS mutations in influencing the immune phenotype based on a classification previously identified by our group. METHODS: One-hundred-thirteen melanoma metastases underwent microarray analysis and BRAF and NRAS genotyping. Allele-specific PCR was also performed in order to exclude low-frequency mutations. RESULTS: Comparison between BRAF and NRAS mutant versus wild type samples identified mostly constituents or regulators of MAPK and related pathways. When testing gene lists discriminative of BRAF, NRAS and MAPK alterations, we found that 112 BRAF-specific transcripts were able to distinguish the two immune-related phenotypes already described in melanoma, with the poor phenotype associated mostly with BRAF mutation. Noteworthy, such association was stronger in samples displaying low BRAF mRNA expression. However, when testing NRAS mutations, we were not able to find the same association. CONCLUSION: This study suggests that BRAF mutation-related specific transcripts associate with a poor phenotype in melanoma and provide a nest for further investigation.


Assuntos
Melanoma/genética , Melanoma/imunologia , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/imunologia , Linhagem Celular Tumoral , Feminino , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Humanos , Masculino , Melanoma/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Células Th1/imunologia , Células Th1/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA