Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35630573

RESUMO

The house fly Musca domestica L. is one of the medical and veterinary pests that can develop resistance to different insecticides. Mixing insecticides is a new strategy for accelerating pest control; furthermore, it can overcome insect resistance to insecticides. This study aims to evaluate three insecticides, chlorfenapyr, abamectin, and lambda-cyhalothrin, individually and their binary mixtures against 2nd instar larvae of M. domestica laboratory strain. Chlorfenapyr exhibited the most toxic effect on larvae, followed by abamectin then the lambda-cyhalothrin. The half-lethal concentrations (LC50) values were 3.65, 30.6, and 94.89 ppm, respectively. These results revealed that the high potentiation effect was the mixture of abamectin/chlorfenapyr in all the mixing ratios. In contrast, the tested combination of lambda-cyhalothrin/abamectin showed an antagonism effect at all mixing ratios against house fly larvae. The total protein, esterases, glutathione-S-transferase (GST), and cytochrome P-450 activity were also measured in the current investigation in the larvae treated with chlorfenapyr. Our results indicate that GST may play a role in detoxifying chlorfenapyr in M. domestica larvae. The highest activity of glutathione-S-transferase was achieved in treated larvae with chlorfenapyr, and an increase in cytochrome P-450 activity in the larvae was observed post-treatment with Abamectin/chlorfenapyr.


Assuntos
Moscas Domésticas , Inseticidas , Animais , Sistema Enzimático do Citocromo P-450 , Glutationa , Resistência a Inseticidas , Inseticidas/farmacologia , Ivermectina/análogos & derivados , Larva , Nitrilas , Piretrinas , Transferases
2.
Antibiotics (Basel) ; 10(10)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34680736

RESUMO

BACKGROUND: The Red Sea sponges have been endorsed as a plentiful source of bioactive compounds with promising anti-cancer and anti-inflammatory activities; therefore, exploring their potential as a source of anti-cancer metabolites has stimulated a growing research interest. PURPOSE: To investigate the anti-cancer and anti-inflammatory potential of the Red Sea sponges, in their bulk and silver nanostructure. Metabolomics analysis of the selected sponge followed by molecular docking studies, will be conducted to explore and predict the secondary metabolites that might provide its capability of inhibiting cancer. MATERIALS AND METHODS: We prepared a chloroform extract (CE) and ethyl acetate extract (EE) of the Red Sea sponge Phyllospongia lamellosa synthesized silver nanoparticles. The prepared silver nanoparticles were characterized through UV-vis spectrophotometric, transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FTIR) analyses. Testing for their anti-cancer activities was performed against MCF-7, MDB-231, and MCF-10A cells. Anti-inflammatory activity against COX-1 and 2 was assessed. Furthermore, liquid chromatography-mass spectrometry (LC-MS)-based metabolomics analysis and molecular docking were also applied.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA