Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 58(11): 5459-5472, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34331656

RESUMO

Corticotropin-releasing factor (CRF) orchestrates our body's response to stressful stimuli. Pain is often stressful and counterbalanced by activation of CRF receptors along the nociceptive pathway, although the involvement of the CRF receptor subtypes 1 and/or 2 (CRF-R1 and CRF-R2, respectively) in CRF-induced analgesia remains controversial. Thus, the aim of the present study was to examine CRF-R1 and CRF-R2 expression within the spinal cord of rats with Freund's complete adjuvant-induced unilateral inflammation of the hind paw using reverse transcriptase polymerase chain reaction, Western blot, radioligand binding, and immunofluorescence confocal analysis. Moreover, the antinociceptive effects of intrathecal (i.t.) CRF were measured by paw pressure algesiometer and their possible antagonism by selective antagonists for CRF-R1 and/or CRF-R2 as well as for opioid receptors. Our results demonstrated a preference for the expression of CRF-R2 over CRF-R1 mRNA, protein, binding sites and immunoreactivity in the dorsal horn of the rat spinal cord. Consistently, CRF as well as CRF-R2 agonists elicited potent dose-dependent antinociceptive effects which were antagonized by the i.t. CRF-R2 selective antagonist K41498, but not by the CRF-R1 selective antagonist NBI35965. In addition, i.t. applied opioid antagonist naloxone dose-dependently abolished the i.t. CRF- as well as CRF-R2 agonist-elicited inhibition of somatic pain. Importantly, double immunofluorescence confocal microscopy of the spinal dorsal horn showed CRF-R2 on enkephalin (ENK)-containing inhibitory interneurons in close opposition of incoming mu-opioid receptor-immunoreactive nociceptive neurons. CRF-R2 was, however, not seen on pre- or on postsynaptic sensory neurons of the spinal cord. Taken together, these findings suggest that i.t. CRF or CRF-R2 agonists inhibit somatic inflammatory pain predominantly through CRF-R2 receptors located on spinal enkephalinergic inhibitory interneurons which finally results in endogenous opioid-mediated pain inhibition.


Assuntos
Dor/fisiopatologia , Receptores de Hormônio Liberador da Corticotropina/fisiologia , Medula Espinal/química , Acenaftenos/farmacologia , Proteínas de Anfíbios/farmacologia , Animais , Artrite Experimental/fisiopatologia , Hormônio Liberador da Corticotropina/farmacologia , Encefalinas/fisiologia , Hiperalgesia/induzido quimicamente , Hiperalgesia/fisiopatologia , Interneurônios/fisiologia , Masculino , Naloxona/farmacologia , Nociceptividade/fisiologia , Hormônios Peptídicos/farmacologia , Células do Corno Posterior/fisiologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Wistar , Receptores de Hormônio Liberador da Corticotropina/biossíntese , Receptores de Hormônio Liberador da Corticotropina/genética , Medula Espinal/fisiopatologia , Urocortinas/farmacologia
2.
Mediators Inflamm ; 2020: 4301072, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33273889

RESUMO

A complex inflammatory process mediated by proinflammatory cytokines and prostaglandins commonly occurs in the synovial tissue of patients with joint trauma (JT), osteoarthritis (OA), and rheumatoid arthritis (RA). This study systematically investigated the distinct expression profile of prostaglandin E2 (PGE2), its processing enzymes (COX-2), and microsomal PGES-1 (mPGES-1) as well as the corresponding prostanoid receptor subtypes (EP1-4) in representative samples of synovial tissue from these patients (JT, OA, and RA). Quantitative TaqMan®-PCR and double immunofluorescence confocal microscopy of synovial tissue determined the abundance and exact immune cell types expressing these target molecules. Our results demonstrated that PGE2 and its processing enzymes COX-2 and mPGES-1 were highest in the synovial tissue of RA, followed by the synovial tissue of OA and JT patients. Corresponding prostanoid receptor, subtypes EP3 were highly expressed in the synovium of RA, followed by the synovial tissue of OA and JT patients. These proinflammatory target molecules were distinctly identified in JT patients mostly in synovial granulocytes, in OA patients predominantly in synovial macrophages and fibroblasts, whereas in RA patients mainly in synovial fibroblasts and plasma cells. Our findings show a distinct expression profile of EP receptor subtypes and PGE2 as well as the corresponding processing enzymes in human synovium that modulate the inflammatory process in JT, OA, and RA patients.


Assuntos
Inflamação/metabolismo , Artropatias/metabolismo , Receptores de Prostaglandina E/metabolismo , Idoso , Artrite Reumatoide/metabolismo , Biópsia , Ciclo-Oxigenase 2/biossíntese , Citocinas/metabolismo , Dinoprostona/biossíntese , Feminino , Fibroblastos/metabolismo , Humanos , Ligantes , Macrófagos/metabolismo , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Osteoartrite/metabolismo , Prostaglandina-E Sintases/biossíntese , Membrana Sinovial/metabolismo
3.
J Control Release ; 268: 352-363, 2017 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-29054370

RESUMO

The mechanisms of axonal trafficking and membrane targeting are well established for sodium channels, which are the principle targets for perineurally applied local anaesthetics. However, they have not been thoroughly investigated for G protein coupled receptors such as mu-opioid receptors (MOR). Focusing on these axonal mechanisms, we found that axonal MOR functionality is quite distinct in two different pain states, i.e. hindpaw inflammation and nerve injury. We observed axonal membrane MOR binding and functional G protein coupling exclusively at sites of CCI nerve injury. Moreover at these axonal membrane sites, MOR exhibited extensive co-localization with the membrane proteins SNAP and Na/K-ATPase as well as NGF-dependent enhanced lipid rafts and L1CAM anchoring proteins. Silencing endogenous L1CAM with intrathecal L1CAM specific siRNA, disrupting lipid rafts with the perineurial cholesterol-sequestering agent MßCD, as well as suppressing NGF receptor activation with the perineurial NGF receptor inhibitor K252a abrogated MOR axonal membrane integration, functional coupling, and agonist-elicited antinociception at sites of nerve injury. These findings suggest that local conceptual changes resulting from nerve injury are required for the establishment of functional axonal membrane MOR. Axonal integration and subsequent accessibility of functionally coupled MOR are of great relevance particularly for patients suffering from severe pain due to nerve injury or tumour infiltration.


Assuntos
Axônios/metabolismo , Neuralgia/metabolismo , Receptores Opioides mu/metabolismo , Analgésicos Opioides/farmacologia , Animais , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Fentanila/farmacologia , Adjuvante de Freund , Inflamação/induzido quimicamente , Inflamação/metabolismo , Masculino , Naloxona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Neuralgia/tratamento farmacológico , Ratos Wistar , Nervo Isquiático/lesões
4.
Mediators Inflamm ; 2017: 9243736, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28316377

RESUMO

Synovial injury and healing are complex processes including catabolic effects by proinflammatory cytokines and anabolic processes by anti-inflammatory mediators. Here we examined the expression of pro- versus anti-inflammatory mediators in synovium of patients with diagnostic arthroscopy (control), joint trauma (JT), osteoarthritis (OA), and rheumatoid arthritis (RA). Synovial samples from these patients were subjected to RT-PCR and double immunofluorescence confocal microscopy of pro- and anti-inflammatory mediators as well as immune cell markers. Interestingly, pro- and anti-inflammatory mediators were expressed predominantly in granulocytes in patients with JT and in macrophages, lymphocytes, and plasma cells in patients with OA and RA. Interestingly, parallel to the severity of inflammation, proinflammatory mediators IL-1ß, TNF-α, and 5-LOX specific mRNA as well as immunoreactive (IR) cells were significantly more abundant in patients with RA and JT than in those with OA. However, anti-inflammatory mediators 15-LOX, FPR2, and IL-10 specific mRNA as well as IR cells were significantly more abundant in patients with OA than in those with JT and RA. These findings show that upregulation of proinflammatory mediators contributes to the predominantly catabolic inflammatory process in JT and RA synovium, whereas upregulation of anabolic anti-inflammatory mediators counteracts inflammation resulting in the inferior inflammatory process in OA synovium.


Assuntos
Artrite Reumatoide/metabolismo , Osteoartrite/metabolismo , Membrana Sinovial/metabolismo , Ferimentos e Lesões/metabolismo , Idoso , Idoso de 80 Anos ou mais , Araquidonato 5-Lipoxigenase/genética , Artrite Reumatoide/imunologia , Feminino , Imunofluorescência , Humanos , Interleucina-10/genética , Interleucina-1beta/genética , Masculino , Pessoa de Meia-Idade , Osteoartrite/imunologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Membrana Sinovial/imunologia , Fator de Necrose Tumoral alfa/genética , Ferimentos e Lesões/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA