Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1354297, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444857

RESUMO

Background: To investigate the potential of Manuka honey (MH) as an immunomodulatory agent in colorectal cancer (CRC) and dissect the underlying molecular and cellular mechanisms. Methods: MH was administered orally over a 4 week-period. The effect of MH treatment on microbiota composition was studied using 16S rRNA sequencing of fecal pellets collected before and after treatment. Pretreated mice were implanted with CRC cells and followed for tumor growth. Tumors and lymphoid organs were analyzed by flow cytometry (FACS), immunohistochemistry and qRT-PCR. Efficacy of MH was also assessed in a therapeutic setting, with oral treatment initiated after tumor implantation. We utilized IFNγ-deficient mice to determine the importance of interferon signaling in MH-induced immunomodulation. Results: Pretreatment with MH enhanced anti-tumor responses leading to suppression of tumor growth. Evidence for enhanced tumor immunogenicity included upregulated MHC class-II on intratumoral macrophages, enhanced MHC class-I expression on tumor cells and increased infiltration of effector T cells into the tumor microenvironment. Importantly, oral MH was also effective in retarding tumor growth when given therapeutically. Transcriptomic analysis of tumor tissue highlighted changes in the expression of various chemokines and inflammatory cytokines that drive the observed changes in tumor immunogenicity. The immunomodulatory capacity of MH was abrogated in IFNγ-deficient mice. Finally, bacterial 16S rRNA sequencing demonstrated that oral MH treatment induced unique changes in gut microbiota that may well underlie the IFN-dependent enhancement in tumor immunogenicity. Conclusion: Our findings highlight the immunostimulatory properties of MH and demonstrate its potential utilization in cancer prevention and treatment.


Assuntos
Microbioma Gastrointestinal , Mel , Neoplasias , Animais , Camundongos , RNA Ribossômico 16S/genética , Administração Oral , Microambiente Tumoral
2.
Sci Rep ; 13(1): 19198, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932491

RESUMO

Crohn's disease (CD) is a chronic inflammatory bowel disease. An imbalanced microbiome (dysbiosis) can predispose to many diseases including CD. The role of oral dysbiosis in CD is poorly understood. We aimed to explore microbiome signature and dysbiosis of the salivary microbiome in CD patients, and correlate microbiota changes to the level of inflammation. Saliva samples were collected from healthy controls (HC) and CD patients (n = 40 per group). Salivary microbiome was analyzed by sequencing the entire 16S rRNA gene. Inflammatory biomarkers (C-reactive protein and calprotectin) were measured and correlated with microbiome diversity. Five dominant species were significantly enriched in CD, namely Veillonella dispar, Megasphaera stantonii, Prevotella jejuni, Dolosigranulum pigrum and Lactobacillus backii. Oral health had a significant impact on the microbiome since various significant features were cariogenic as Streptococcus mutans or periopathogenic such as Fusobacterium periodonticum. Furthermore, disease activity, duration and frequency of relapses impacted the oral microbiota. Treatment with monoclonal antibodies led to the emergence of a unique species called Simonsiella muelleri. Combining immunomodulatory agents with monoclonal antibodies significantly increased multiple pathogenic species such as Salmonella enterica, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. Loss of diversity in CD was shown by multiple diversity indices. There was a significant negative correlation between gut inflammatory biomarkers (particularly calprotectin) and α-diversity, suggesting more inflammation associated with diversity loss in CD. Salivary dysbiosis was evident in CD patients, with unique microbiota signatures and perturbed species that can serve as disease biomarkers or potential targets for microbiota modulation. The interplay of various factors collectively contributed to dysbiosis, although each factor probably had a unique effect on the microbiome. The emergence of pathogenic bacteria in the oral cavity of CD patients is alarming since they can disturb gut homeostasis and induce inflammation by swallowing, or hematogenous spread of microbiota, their metabolites, or generated inflammatory mediators.


Assuntos
Doença de Crohn , Microbioma Gastrointestinal , Microbiota , Humanos , Doença de Crohn/patologia , Disbiose/microbiologia , RNA Ribossômico 16S/genética , Microbioma Gastrointestinal/genética , Inflamação , Biomarcadores , Anticorpos Monoclonais , Complexo Antígeno L1 Leucocitário
3.
Saudi J Biol Sci ; 30(12): 103867, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38020230

RESUMO

Globally, Helicobacter pylori (H. pylori), a stomach pathogen, is present in around 50 % of the population. This bacterial infection produces persistent inflammation, which significantly raises the risk of duodenal, gastric ulcer, and stomach cancer. The goal of this study is to identify the vacA genotypes in H. pylori and analyze how they relate to medical conditions brought on by the bacteria and clarithromycin resistance. PCR was used to describe 115 endoscopic stomach samples from infected patients and identify vacA gene. Of the 115 research participants, H. pylori was found in 81 (70.4 %) of them. Of the isolated cultures, only 38 (69.1 %) were resistant to clarithromycin. VacA was discovered in 55 (67.9 %) of the samples that had H. pylori in them. Patients with gastritis were more likely to have s2m2 strains of infection (66.7 %), while those with gastric and duodenal ulcers were more likely to have s1m1 strains (64.7 %). VacA-positive H. pylori strains (60 % n = 33) were more resistant to clarithromycin versus (19.2 % n = 5) for vacA-negative bacteria. Clarithromycin resistance was significantly linked to vacA s2m2 in H. pylori isolates (75.9 %). According to the study's results, the vacA variants s1m1 and s2m2 have a strong connection with the emergence of H. pylori infections that cause peptic ulcer disease in the population of Iraq. Genetic testing is essential in predicting both the course of treatment and the outcome of H. pylori disease.

4.
Nutrients ; 15(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37571313

RESUMO

Inflammatory bowel disease (IBD) is a complex disorder characterized by chronic inflammation of the gastrointestinal tract (GIT). IBD mainly includes two distinct diseases, namely Crohn's disease and ulcerative colitis. To date, the precise etiology of these conditions is not fully elucidated. Recent research has shed light on the significant role of the oral and gut microbiome in the development and progression of IBD and its collective influence on gut health. This review aims to investigate the connection between the oral and gut microbiome in the context of IBD, exploring the intricate interplay between these microbial communities and their impact on overall gut health. Recent advances in microbiome research have revealed a compelling link between the oral and gut microbiome, highlighting their pivotal role in maintaining overall health. The oral cavity and GIT are two interconnected ecosystems that harbor complex microbial communities implicated in IBD pathogenesis in several ways. Reduction in diversity and abundance of beneficial bacterial species with the colonization of opportunistic pathogens can induce gut inflammation. Some of these pathogens can arise from oral origin, especially in patients with oral diseases such as periodontitis. It is essential to discern the mechanisms of microbial transmission, the impact of oral health on the gut microbiome, and the potential role of dysbiosis in disease development. By elucidating this relationship, we can enhance our understanding of IBD pathogenesis and identify potential therapeutic avenues for managing the disease. Furthermore, innovative strategies for modulating the oral and gut microbiome can promote health and prevent disease occurrence and progression.


Assuntos
Doença de Crohn , Doenças Inflamatórias Intestinais , Microbiota , Humanos , Promoção da Saúde , Doenças Inflamatórias Intestinais/microbiologia , Doença de Crohn/terapia , Inflamação , Disbiose/microbiologia
5.
Int J Mol Sci ; 24(8)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37108065

RESUMO

The human body is a superorganism that harbors trillions of microbes, most of which inhabit the gut. To colonize our bodies, these microbes have evolved strategies to regulate the immune system and maintain intestinal immune homeostasis by secreting chemical mediators. There is much interest in deciphering these chemicals and furthering their development as novel therapeutics. In this work, we present a combined experimental and computational approach to identifying functional immunomodulatory molecules from the gut microbiome. Based on this approach, we report the discovery of lactomodulin, a unique peptide from Lactobacillus rhamnosus that exhibits dual anti-inflammatory and antibiotic activities and minimal cytotoxicity in human cell lines. Lactomodulin reduces several secreted proinflammatory cytokines, including IL-8, IL-6, IL-1ß, and TNF-α. As an antibiotic, lactomodulin is effective against a range of human pathogens, and is most potent against antibiotic-resistant strains such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE). The multifunctional activity of lactomodulin affirms that the microbiome encodes evolved functional molecules with promising therapeutic potential.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Microbiota , Humanos , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Peptídeos/farmacologia , Anti-Inflamatórios/farmacologia
6.
PLoS One ; 17(12): e0277946, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36580460

RESUMO

BACKGROUND: Cefiderocol (CFDC) is a novel siderophore-cephalosporin, effective against multidrug-resistant Gram-negative bacteria. As it has a siderophore side chain, it can utilize iron acquisition systems for penetration of the bacterial outer membrane. We aimed to elucidate the role of siderophores and iron uptake receptors in defining Klebsiella pneumoniae susceptibility to CFDC. METHODS: Initially, 103 K. pneumoniae strains were characterized for susceptibility to different antibiotics including CFDC. CFDC minimum inhibitory concentrations (MIC) were determined in iron-depleted and iron-enriched conditions. Iron uptake genes including siderophores, their receptors, ferric citrate (fecA) and iron uptake (kfu) receptors were detected by PCR in all the strains. For 10 selected strains, gene expression was tested in iron-depleted media with or without CFDC treatment and compared to expression in iron-enriched conditions. RESULTS: CFDC exhibited 96.1% susceptibility, being superior to all the other antibiotics (MIC50: 0.5 and MIC90: 4 µg/ml). Only three strains (2.9%) were intermediately susceptible and a pandrug resistant strain (0.97%) was resistant to CFDC (MIC: 8 and 256 µg/ml, respectively). The presence of kfu and fecA had a significant impact on CFDC MIC, especially when co-produced, and if coupled with yersiniabactin receptor (fyuA). CFDC MICs were negatively correlated with enterobactin receptor (fepA) expression and positively correlated with expression of kfu and fecA. Thus, fepA was associated with increased susceptibility to CFDC, while kfu and fecA were associated with reduced susceptibility to CFDC. CFDC MICs increased significantly in iron-enriched media, with reduced expression of siderophore receptors, hence, causing less drug uptake. CONCLUSION: Iron acquisition systems have a significant impact on CFDC activity, and their altered expression is a factor leading to reduced susceptibility. Iron concentration is also a major player affecting CFDC susceptibility; therefore, it is essential to explore possible ways to improve the drug activity to facilitate its use to treat infections in iron-rich sites.


Assuntos
Klebsiella pneumoniae , Sideróforos , Sideróforos/farmacologia , Cefalosporinas/farmacologia , Antibacterianos/farmacologia , Monobactamas/farmacologia , Ferro/metabolismo , Testes de Sensibilidade Microbiana , Cefiderocol
7.
Sci Rep ; 12(1): 2861, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35190583

RESUMO

This study aimed to assess the effect of smoking different tobacco types on the supragingival microbiome and its relation to dental caries. Forty supragingival plaque samples were collected from smokers of a single tobacco type and non-smokers seeking treatment at the University Dental Hospital Sharjah, UAE. DMFT (decayed, missing and filled teeth) was determined for all participants who were divided into two groups: no-low caries (NC-LC: DMFT = 0-4; n = 18) and moderate-high caries (MC-HC: DMFT = 5-20; n = 22). 16S rRNA gene was sequenced using third-generation sequencing with Nanopore technology. Microbiome composition and diversity were compared. Caries was most common among cigarette smokers. Supragingival microbiota were significantly altered among smokers of different tobacco types. In cigarette smokers, cariogenic bacteria from genus Streptococcus (including S. mutans) were significantly more among subjects with NC-LC, while Lactobacilli (including L. fermentum) were more among subjects with MC-HC. In medwakh smokers, several periodontopathogens were significantly elevated in subjects with NC-LC, while other pathogenic bacteria (as Klebsiella pneumoniae) were more in those with MC-HC. Cigarette and alternative tobacco smoking had a significant impact on the supragingival microbiome. Indeed, further studies are required to unravel the consequences of oral dysbiosis triggered by smoking. This could pave the way for microbiota-based interventional measures for restoring a healthy oral microbiome which could be a promising strategy to prevent dental caries.


Assuntos
Cárie Dentária/etiologia , Cárie Dentária/microbiologia , Placa Dentária/microbiologia , Gengiva/microbiologia , Microbiota , Nicotiana/efeitos adversos , Nicotiana/classificação , Fumar/efeitos adversos , Adolescente , Adulto , Cárie Dentária/prevenção & controle , Disbiose/etiologia , Disbiose/microbiologia , Feminino , Humanos , Lactobacillus , Masculino , Pessoa de Meia-Idade , Streptococcus , Produtos do Tabaco/efeitos adversos , Adulto Jovem
8.
Cancers (Basel) ; 13(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200264

RESUMO

(1) Background: Today, the discovery of novel anticancer agents with multitarget effects and high safety margins represents a high challenge. Drug discovery efforts indicated that benzopyrane scaffolds possess a wide range of pharmacological activities. This spurs on building a skeletally diverse library of benzopyranes to identify an anticancer lead drug candidate. Here, we aim to characterize the anticancer effect of a novel benzopyrane derivative, aiming to develop a promising clinical anticancer candidate. (2) Methods: The anticancer effect of SIMR1281 against a panel of cancer cell lines was tested. In vitro assays were performed to determine the effect of SIMR1281 on GSHR, TrxR, mitochondrial metabolism, DNA damage, cell cycle progression, and the induction of apoptosis. Additionally, SIMR1281 was evaluated in vivo for its safety and in a xenograft mice model. (3) Results: SIMR1281 strongly inhibits GSHR while it moderately inhibits TrxR and modulates the mitochondrial metabolism. SIMR1281 inhibits the cell proliferation of various cancers. The antiproliferative activity of SIMR1281 was mediated through the induction of DNA damage, perturbations in the cell cycle, and the inactivation of Ras/ERK and PI3K/Akt pathways. Furthermore, SIMR1281 induced apoptosis and attenuated cell survival machinery. In addition, SIMR1281 reduced the tumor volume in a xenograft model while maintaining a high in vivo safety profile at a high dose. (4) Conclusions: Our findings demonstrate the anticancer multitarget effect of SIMR1281, including the dual inhibition of glutathione and thioredoxin reductases. These findings support the development of SIMR1281 in preclinical and clinical settings, as it represents a potential lead compound for the treatment of cancer.

10.
Sci Rep ; 11(1): 1113, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441919

RESUMO

Smoking is a risk factor for periodontal disease, and a cause of oral microbiome dysbiosis. While this has been evaluated for traditional cigarette smoking, there is limited research on the effect of other tobacco types on the oral microbiome. This study investigates subgingival microbiome composition in smokers of different tobacco types and their effect on periodontal health. Subgingival plaques were collected from 40 individuals, including smokers of either cigarettes, medwakh, or shisha, and non-smokers seeking dental treatment at the University Dental Hospital in Sharjah, United Arab Emirates. The entire (~ 1500 bp) 16S rRNA bacterial gene was fully amplified and sequenced using Oxford Nanopore technology. Subjects were compared for the relative abundance and diversity of subgingival microbiota, considering smoking and periodontal condition. The relative abundances of several pathogens were significantly higher among smokers, such as Prevotella denticola and Treponema sp. OMZ 838 in medwakh smokers, Streptococcus mutans and Veillonella dispar in cigarette smokers, Streptococcus sanguinis and Tannerella forsythia in shisha smokers. Subgingival microbiome of smokers was altered even in subjects with no or mild periodontitis, probably making them more prone to severe periodontal diseases. Microbiome profiling can be a useful tool for periodontal risk assessment. Further studies are recommended to investigate the impact of tobacco cessation on periodontal disease progression and oral microbiome.


Assuntos
Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Placa Dentária/microbiologia , Microbiota , Periodontite/epidemiologia , Periodonto/microbiologia , Fumar Tabaco , Adolescente , Adulto , Bactérias/isolamento & purificação , Fumar Cigarros , Feminino , Gengiva/microbiologia , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , RNA Ribossômico 16S/genética , Emirados Árabes Unidos/epidemiologia , Adulto Jovem
11.
J Org Chem ; 84(22): 14476-14486, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31633919

RESUMO

The design and synthesis of a quality compound library containing a small number of skeletally diverse scaffolds, whose members rapidly deliver new chemical probes active against multiple phenotypes, is paramount in drug discovery. In this context, an efficient one-pot strategy for the synthesis of a mini library of sp3-enriched hexahydropyrido[2',1':2,3]imidazo[1,5-a]quinolinium and hexahydrothiazolo[2',3':2,3]imidazo[1,5-a]quinolinium architectures, is described. This new one-pot method features a combination of Sc(OTf)3-catalyzed [4 + 1]-cycloaddition with aza-Michael addition reactions. The cascade results in a rapid and diastereoselective formation of these scaffolds via desymmetrization of the oxidative dearomatization products of phenols. Phenotypic screening of the mini library against multiple drug-resistant bacteria and a panel of cancer cell lines identified potential antibacterial and anticancer lead drug candidates. Further investigation of the anticancer leads, indicated by their activity as tubulin-polymerization inhibitors, represents a promising approach for cancer therapy.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Compostos Aza/farmacologia , Escherichia coli/efeitos dos fármacos , Quinolonas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Compostos Aza/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Reação de Cicloadição , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Quinolonas/síntese química , Quinolonas/química , Estereoisomerismo
12.
J Diabetes Res ; 2017: 2643079, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29138754

RESUMO

This study aims to investigate the relation between resistin and periodontopathogenic bacterial levels in the saliva of obese adults compared to healthy control and to examine whether salivary resistin can serve as a biomarker of type 2 diabetes in obese patients. A total of 78 saliva samples were collected from patients attending to the University Dental Hospital, Sharjah, UAE. The patients were divided into three equal groups: obese diabetics, obese nondiabetics, and nonobese nondiabetic control. Salivary resistin was measured using ELISA. The levels of bacterial species associated with periodontitis (Treponema denticola, Porphyromonas gingivalis, Tannerella forsythia, and Actinobacillus actinomycetemcomitans) and gingivitis (Fusobacterium spp.) were measured using real-time PCR. Both salivary resistin and periodontopathogenic bacteria including Fusobacterium spp., P. gingivalis, and T. forsythia were detected in significantly higher quantities in the obese patients (diabetics and nondiabetics) than nonobese nondiabetic control. Resistin concentrations were significantly correlated with BMI; however, its level was not correlated with the blood glucose. In this study, high salivary resistin was associated with obesity, which is a major predisposing factor for type 2 diabetes and also a risk factor for oral diseases. The high levels of salivary periodontopathogenic bacteria could upregulate the local release of salivary resistin in obese people.


Assuntos
Diabetes Mellitus Tipo 1/microbiologia , Gengivite/microbiologia , Obesidade/microbiologia , Periodontite/microbiologia , Resistina/análise , Saliva/microbiologia , Adulto , Aggregatibacter actinomycetemcomitans/isolamento & purificação , Glicemia , Índice de Massa Corporal , Diabetes Mellitus Tipo 1/metabolismo , Feminino , Fusobacterium/isolamento & purificação , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/metabolismo , Porphyromonas gingivalis/isolamento & purificação , Saliva/química , Tannerella forsythia/isolamento & purificação , Treponema denticola/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA