Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1364503, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715796

RESUMO

Obesity has become a global epidemic in the modern world, significantly impacting the global healthcare economy. Lifestyle interventions remain the primary approach to managing obesity, with medical therapy considered a secondary option, often used in conjunction with lifestyle modifications. In recent years, there has been a proliferation of newer therapeutic agents, revolutionizing the treatment landscape for obesity. Notably, glucagon-like peptide-1 receptor agonists (GLP-1 RAs), such as semaglutide, liraglutide, and the recently approved dual GLP-1/GIP RAs agonist tirzepatide, have emerged as effective medications for managing obesity, resulting in significant weight loss. These agents not only promote weight reduction but also improve metabolic parameters, including lipid profiles, glucose levels, and central adiposity. On the other hand, bariatric surgery has demonstrated superior efficacy in achieving weight reduction and addressing overall metabolic imbalances. However, with ongoing technological advancements, there is an ongoing debate regarding whether personalized medicine, targeting specific components, will shape the future of developing novel therapeutic agents for obesity management.


Assuntos
Fármacos Antiobesidade , Cirurgia Bariátrica , Manejo da Obesidade , Obesidade , Humanos , Obesidade/terapia , Cirurgia Bariátrica/métodos , Manejo da Obesidade/métodos , Fármacos Antiobesidade/uso terapêutico , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Redução de Peso
2.
Front Public Health ; 12: 1348441, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476500

RESUMO

Objectives: Obstructive sleep apnea (OSA) can adversely affect the immune response through clinical factors such as hypoxia, inflammation, and sleep disturbance. Since SARS-CoV-2 heavily relies on local and systemic host immune responses, this study aims to examine the links between the severity of OSA risk, cytokine levels, and the severity of symptoms associated with SARS-CoV-2 infection. Methods: Saliva and blood samples from 50 COVID-19 patients and 30 non-infected hospital staff members were collected. Using Luminex multiplex analysis, 65 blood and salivary cytokines were examined from the collected samples. Ordinal logistic regression analysis was utilized to examine the association between the self-reported risk of OSA, assessed through the STOP-Bang questionnaire, and the likelihood of experiencing severe symptoms of COVID-19. Mann-Whitney test was then performed to compare the cytokine levels between individuals with moderate to severe risk of OSA to those with a mild risk of OSA. Results: Ordinal logistic regression analysis revealed that individuals with a moderate to severe risk of OSA were 7.60 times more likely to experience more severe symptoms of COVID-19 compared to those with a mild risk of OSA (OR = 7.60, 95%CI: 3.03, 19.06, p < 0.001). Moreover, among COVID-19-positive patients with a moderate to severe risk of OSA, there was a statistically significant negative correlation with serum IL-6 (p < 0.05), Eotaxin (CCL11) (p = 0.04), and salivary MIP-3α/CCL20 (p = 0.04). In contrast, individuals without COVID-19 who had a moderate to severe risk of OSA exhibited a significant positive correlation with serum IL-6 (p = 0.04). Conclusion: Individuals with moderate to severe risk of OSA were more likely to experience severe COVID-19 symptoms than those with mild risk for OSA. Additional analysis from the present studies revealed distinct patterns of oral and systemic immune responses between individuals with mild and moderate to severe risk of OSA. Findings from the present study underscores the importance of early detection and management of OSA to improve clinical outcomes, particularly when faced with the subsequent superimposed infection such as COVID-19.


Assuntos
COVID-19 , Apneia Obstrutiva do Sono , Humanos , Citocinas , Interleucina-6 , Polissonografia , SARS-CoV-2 , Apneia Obstrutiva do Sono/diagnóstico
3.
Front Endocrinol (Lausanne) ; 15: 1265799, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414818

RESUMO

Introduction: A high-fat/high-sucrose diet leads to adverse metabolic changes that affect insulin sensitivity, function, and secretion. The source of fat in the diet might inhibit or increase this adverse effect. Fish oil and cocoa butter are a significant part of our diets. Yet comparisons of these commonly used fat sources with high sucrose on pancreas morphology and function are not made. This study investigated the comparative effects of a fish oil-based high-fat/high-sucrose diet (Fish-HFDS) versus a cocoa butter-based high-fat/high-sucrose diet (Cocoa-HFDS) on endocrine pancreas morphology and function in mice. Methods: C57BL/6 male mice (n=12) were randomly assigned to dietary intervention either Fish-HFDS (n=6) or Cocoa-HFDS (n=6) for 22 weeks. Intraperitoneal glucose and insulin tolerance tests (IP-GTT and IP-ITT) were performed after 20-21 weeks of dietary intervention. Plasma concentrations of c-peptide, insulin, glucagon, GLP-1, and leptin were measured by Milliplex kit. Pancreatic tissues were collected for immunohistochemistry to measure islet number and composition. Tissues were multi-labelled with antibodies against insulin and glucagon, also including expression on Pdx1-positive cells. Results and discussion: Fish-HFDS-fed mice showed significantly reduced food intake and body weight gain compared to Cocoa-HFDS-fed mice. Fish-HFDS group had lower fasting blood glucose concentration and area under the curve (AUC) for both GTT and ITT. Plasma c-peptide, insulin, glucagon, and GLP-1 concentrations were increased in the Fish-HFDS group. Interestingly, mice fed the Fish-HFDS diet displayed higher plasma leptin concentration. Histochemical analysis revealed a significant increase in endocrine pancreas ß-cells and islet numbers in mice fed Fish-HFDS compared to the Cocoa-HFDS group. Taken together, these findings suggest that in a high-fat/high-sucrose dietary setting, the source of the fat, especially fish oil, can ameliorate the effect of sucrose on glucose homeostasis and endocrine pancreas morphology and function.


Assuntos
Gorduras na Dieta , Ilhotas Pancreáticas , Leptina , Masculino , Camundongos , Animais , Glucagon , Sacarose/efeitos adversos , Óleos de Peixe/farmacologia , Peptídeo C , Camundongos Endogâmicos C57BL , Ilhotas Pancreáticas/metabolismo , Insulina , Glucose , Peptídeo 1 Semelhante ao Glucagon/metabolismo
4.
Biomedicines ; 12(1)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38255314

RESUMO

Dysregulated metabolic dynamics are evident in both cancer and diabetes, with metabolic alterations representing a facet of the myriad changes observed in these conditions. This review delves into the commonalities in metabolism between cancer and type 2 diabetes (T2D), focusing specifically on the contrasting roles of oxidative phosphorylation (OXPHOS) and glycolysis as primary energy-generating pathways within cells. Building on earlier research, we explore how a shift towards one pathway over the other serves as a foundational aspect in the development of cancer and T2D. Unlike previous reviews, we posit that this shift may occur in seemingly opposing yet complementary directions, akin to the Yin and Yang concept. These metabolic fluctuations reveal an intricate network of underlying defective signaling pathways, orchestrating the pathogenesis and progression of each disease. The Warburg phenomenon, characterized by the prevalence of aerobic glycolysis over minimal to no OXPHOS, emerges as the predominant metabolic phenotype in cancer. Conversely, in T2D, the prevailing metabolic paradigm has traditionally been perceived in terms of discrete irregularities rather than an OXPHOS-to-glycolysis shift. Throughout T2D pathogenesis, OXPHOS remains consistently heightened due to chronic hyperglycemia or hyperinsulinemia. In advanced insulin resistance and T2D, the metabolic landscape becomes more complex, featuring differential tissue-specific alterations that affect OXPHOS. Recent findings suggest that addressing the metabolic imbalance in both cancer and diabetes could offer an effective treatment strategy. Numerous pharmaceutical and nutritional modalities exhibiting therapeutic effects in both conditions ultimately modulate the OXPHOS-glycolysis axis. Noteworthy nutritional adjuncts, such as alpha-lipoic acid, flavonoids, and glutamine, demonstrate the ability to reprogram metabolism, exerting anti-tumor and anti-diabetic effects. Similarly, pharmacological agents like metformin exhibit therapeutic efficacy in both T2D and cancer. This review discusses the molecular mechanisms underlying these metabolic shifts and explores promising therapeutic strategies aimed at reversing the metabolic imbalance in both disease scenarios.

5.
Am J Nephrol ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38194940

RESUMO

INTRODUCTION: Autosomal dominant polycystic kidney disease (ADPKD) is a monogenic disease characterized by the accumulation of fluid-filled cysts in the kidneys, leading to renal volume enlargement and progressive kidney function impairment. Disease severity, though, may vary due to allelic and genetic heterogeneity. This study aimed to determine genotype-phenotype correlations between PKD1 truncating and non-truncating mutations and kidney function decline in ADPKD patients. METHODS: We established a single center retrospective cohort study in Kuwait where we followed every patient with a confirmed PKD1-ADPKD diagnosis clinically and genetically. Renal function tests were performed annually. We fitted generalized additive mixed effects models with random intercepts for each individual to analyze repeated measures of kidney function across mutation type. We then calculated survival time to kidney failure in a cox proportional hazards model. Models were adjusted for sex, age at visit and birth year. RESULTS: The study included 22 truncating and 20 non-truncating (42 total) patients followed for an average of 6.6 years (range: 1 to 12 years). Those with PKD1 truncating mutations had a more rapid rate of eGFR decline (-4.7 ml/min/1.73m2 per year; 95%CI -5.0, -4.4) compared to patients with PKD1 non-truncating mutations (-3.5 ml/min/1.73m2 per year; 95%CI -4.0, -3.1) (P for interaction < 0.001). Kaplan-Meier survival analysis of time to kidney failure showed that patients with PKD1 truncating mutations had a shorter renal survival time (median 51 years) compared to those with non-truncating mutations (median 56 years) (P for log-rank = 0.008). CONCLUSION: In longitudinal and survival analyses, patients with PKD1 truncating mutations showed a faster decline in kidney function compared to patients PKD1 non-truncating mutations. Early identification of patients with PKD1 truncating mutations can, at best, inform early clinical interventions or, at least, help suggest aggressive monitoring.

6.
Stem Cells Transl Med ; 13(2): 101-106, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-37950618

RESUMO

Type 1 diabetes (T1D) is a chronic autoimmune disease associated with complications that reduce the quality of life of affected individuals and their families. The therapeutic options for T1D are limited to insulin therapy and islet transplantation; these options are not focused on preserving ß-cell function and endogenous insulin. Despite the promising outcomes observed in current clinical trials involving allogeneic Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) infusion for the management of T1D, the precise underlying mechanism of action remains to be elucidated. In this correspondence, we propose prospective mechanisms of action of WJ-MSCs that may be mediating their observed capability to preserve ß-cell function and prevent T1D progression and provide recommendations for further investigations in clinical settings. We also highlight the efficacy of WJ-MSCs for therapeutic applications in comparison to other adult MSCs. Finally, we recommend the participation of muti-centers governed by international organizations to implement guidelines for the safe practice of cell therapy and patients' welfare.


Assuntos
Diabetes Mellitus Tipo 1 , Células-Tronco Mesenquimais , Geleia de Wharton , Adulto , Humanos , Diabetes Mellitus Tipo 1/terapia , Qualidade de Vida , Cordão Umbilical , Insulina , Diferenciação Celular , Células Cultivadas , Proliferação de Células/fisiologia
7.
Cells ; 12(21)2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37947641

RESUMO

BACKGROUND: Angiopoietin-like protein 8 (ANGPTL8) is known to regulate lipid metabolism and inflammation. It interacts with ANGPTL3 and ANGPTL4 to regulate lipoprotein lipase (LPL) activity and with IKK to modulate NF-κB activity. Further, a single nucleotide polymorphism (SNP) leading to the ANGPTL8 R59W variant associates with reduced low-density lipoprotein/high-density lipoprotein (LDL/HDL) and increased fasting blood glucose (FBG) in Hispanic and Arab individuals, respectively. In this study, we investigate the impact of the R59W variant on the inflammatory activity of ANGPTL8. METHODS: The ANGPTL8 R59W variant was genotyped in a discovery cohort of 867 Arab individuals from Kuwait. Plasma levels of ANGPTL8 and inflammatory markers were measured and tested for associations with the genotype; the associations were tested for replication in an independent cohort of 278 Arab individuals. Impact of the ANGPTL8 R59W variant on NF-κB activity was examined using approaches including overexpression, luciferase assay, and structural modeling of binding dynamics. RESULTS: The ANGPTL8 R59W variant was associated with increased circulatory levels of tumor necrosis factor alpha (TNFα) and interleukin 7 (IL7). Our in vitro studies using HepG2 cells revealed an increased phosphorylation of key inflammatory proteins of the NF-κB pathway in individuals with the R59W variant as compared to those with the wild type, and TNFα stimulation further elevated it. This finding was substantiated by increased luciferase activity of NF-κB p65 with the R59W variant. Modeled structural and binding variation due to R59W change in ANGPTL8 agreed with the observed increase in NF-κB activity. CONCLUSION: ANGPTL8 R59W is associated with increased circulatory TNFα, IL7, and NF-κB p65 activity. Weak transient binding of the ANGPTL8 R59W variant explains its regulatory role on the NF-κB pathway and inflammation.


Assuntos
Proteína 8 Semelhante a Angiopoietina , Hormônios Peptídicos , Humanos , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa , Proteínas Semelhantes a Angiopoietina/genética , Proteínas Semelhantes a Angiopoietina/metabolismo , Interleucina-7 , Inflamação/genética , Transdução de Sinais , Luciferases/metabolismo , Proteína 3 Semelhante a Angiopoietina , Hormônios Peptídicos/genética , Hormônios Peptídicos/metabolismo
8.
Int J Mol Sci ; 24(20)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37894865

RESUMO

Obesity and metabolic syndrome involve chronic low-grade inflammation called metabolic inflammation as well as metabolic derangements from increased endotoxin and free fatty acids. It is debated whether the endoplasmic reticulum (ER) stress in monocytic cells can contribute to amplify metabolic inflammation; if so, by which mechanism(s). To test this, metabolic stress was induced in THP-1 cells and primary human monocytes by treatments with lipopolysaccharide (LPS), palmitic acid (PA), or oleic acid (OA), in the presence or absence of the ER stressor thapsigargin (TG). Gene expression of tumor necrosis factor (TNF)-α and markers of ER/oxidative stress were determined by qRT-PCR, TNF-α protein by ELISA, reactive oxygen species (ROS) by DCFH-DA assay, hypoxia-inducible factor 1-alpha (HIF-1α), p38, extracellular signal-regulated kinase (ERK)-1,2, and nuclear factor kappa B (NF-κB) phosphorylation by immunoblotting, and insulin sensitivity by glucose-uptake assay. Regarding clinical analyses, adipose TNF-α was assessed using qRT-PCR/IHC and plasma TNF-α, high-sensitivity C-reactive protein (hs-CRP), malondialdehyde (MDA), and oxidized low-density lipoprotein (OX-LDL) via ELISA. We found that the cooperative interaction between metabolic and ER stresses promoted TNF-α, ROS, CCAAT-enhancer-binding protein homologous protein (CHOP), activating transcription factor 6 (ATF6), superoxide dismutase 2 (SOD2), and nuclear factor erythroid 2-related factor 2 (NRF2) expression (p ≤ 0.0183),. However, glucose uptake was not impaired. TNF-α amplification was dependent on HIF-1α stabilization and p38 MAPK/p65 NF-κB phosphorylation, while the MAPK/NF-κB pathway inhibitors and antioxidants/ROS scavengers such as curcumin, allopurinol, and apocynin attenuated the TNF-α production (p ≤ 0.05). Individuals with obesity displayed increased adipose TNF-α gene/protein expression as well as elevated plasma levels of TNF-α, CRP, MDA, and OX-LDL (p ≤ 0.05). Our findings support a metabolic-ER stress cooperativity model, favoring inflammation by triggering TNF-α production via the ROS/CHOP/HIF-1α and MAPK/NF-κB dependent mechanisms. This study also highlights the therapeutic potential of antioxidants in inflammatory conditions involving metabolic/ER stresses.


Assuntos
NF-kappa B , Fator de Necrose Tumoral alfa , Humanos , Estresse do Retículo Endoplasmático , Glucose , Inflamação , NF-kappa B/metabolismo , Obesidade , Espécies Reativas de Oxigênio/metabolismo , Células THP-1 , Fator de Necrose Tumoral alfa/metabolismo
9.
Cells ; 12(19)2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37830621

RESUMO

Post-translational modifications (PTMs) play important roles in regulating several human diseases, like cancer, neurodegenerative disorders, and metabolic disorders. Investigating PTMs' contribution to protein functions is critical for modern biology and medicine. Proprotein convertases (PCs) are irreversible post-translational modifiers that have been extensively studied and are considered as key targets for novel therapeutics. They cleave proteins at specific sites causing conformational changes affecting their functions. Furin is considered as a PC model in regulating growth factors and is involved in regulating many pro-proteins. The mammalian target of the rapamycin (mTOR) signaling pathway is another key player in regulating cellular processes and its dysregulation is linked to several diseases including type 2 diabetes (T2D). The role of furin in the context of diabetes has been rarely explored and is currently lacking. Moreover, furin variants have altered activity that could have implications on overall health. In this review, we aim to highlight the role of furin in T2D in relation to mTOR signaling. We will also address furin genetic variants and their potential effect on T2D and ß-cell functions. Understanding the role of furin in prediabetes and dissecting it from other confounding factors like obesity is crucial for future therapeutic interventions in metabolic disorders.


Assuntos
Diabetes Mellitus Tipo 2 , Furina , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Furina/metabolismo , Pró-Proteína Convertases/metabolismo , Processamento de Proteína Pós-Traducional , Serina-Treonina Quinases TOR/metabolismo
10.
Int J Mol Sci ; 24(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37762544

RESUMO

Diabetic nephropathy (DN) is a complicated condition related to type 2 diabetes mellitus (T2D). ANGPTL8 is a hepatic protein highlighted as a risk factor for DN in patients with T2D; additionally, recent evidence from DN studies supports the involvement of growth hormone/IGF/IGF-binding protein axis constituents. The potential link between ANGPTL8 and IGFBPs in DN has not been explored before. Here, we assessed changes in the circulating ANGPTL8 levels in patients with DN and its association with IGFBP-1, -3, and -4. Our data revealed a significant rise in circulating ANGPTL8 in people with DN, 4443.35 ± 396 ng/mL compared to 2059.73 ± 216 ng/mL in people with T2D (p < 0.001). Similarly, levels of IGFBP-3 and -4 were significantly higher in people with DN compared to the T2D group. Interestingly, the rise in ANGPTL8 levels correlated positively with IGFBP-4 levels in T2DM patients with DN (p < 0.001) and this significant correlation disappeared in T2DM patients without DN. It also correlated positively with serum creatinine and negatively with the estimated glomerular filtration rate (eGFR, All < 0.05). The area under the curve (AUC) on receiver operating characteristic (ROC) analysis of the combination of ANGPTL8 and IGFBP4 was 0.76 (0.69-0.84), p < 0.001, and the specificity was 85.9%. In conclusion, our results showed a significant increase in ANGPTL8 in patients with DN that correlated exclusively with IGFBP-4, implicating a potential role of both proteins in the pathophysiology of DN. Our findings highlight the significance of these biomarkers, suggesting them as promising diagnostic molecules for the detection of diabetic nephropathy.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Hormônios Peptídicos , Humanos , Proteína 8 Semelhante a Angiopoietina , Área Sob a Curva , Diabetes Mellitus Tipo 2/complicações , Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina , Curva ROC
11.
Sci Rep ; 13(1): 14351, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658104

RESUMO

Studies have established the association between increased plasma levels of matrix metalloproteinase (MMP)-9 and adipose tissue inflammation. Tumor necrosis factor α (TNFα) was elevated in obesity and is involved in the induction of MMP-9 in monocytic cells. However, the underlying molecular mechanism was incompletely understood. As per our recent report, TNFα mediates inflammatory responses through long-chain acyl-CoA synthetase 1 (ACSL1). Therefore, we further investigated the role of ACSL1 in TNFα-mediated MMP-9 secretion in monocytic cells. THP-1 cells and primary monocytes were used to study MMP-9 expression. mRNA and protein levels of MMP-9 were determined by qRT-PCR and ELISA, respectively. Signaling pathways were studied using Western blotting, inhibitors, and NF-kB/AP1 reporter cells. We found that THP-1 cells and primary human monocytes displayed increased MMP-9 mRNA expression and protein secretion after incubation with TNFα. ACSL1 inhibition using triacsin C significantly reduced the expression of MMP-9 in the THP-1 cells. However, the inhibition of ß-oxidation and ceramide biosynthesis did not affect the TNFα-induced MMP-9 production. Using small interfering RNA-mediated ACSL1 knockdown, we further confirmed that TNFα-induced MMP-9 expression/secretion was significantly reduced in ACSL1-deficient cells. TNFα-mediated MMP-9 expression was also significantly reduced by the inhibition of ERK1/ERK2, JNK, and NF-kB. We further observed that TNFα induced phosphorylation of SAPK/JNK (p54/46), ERK1/2 (p44/42 MAPK), and NF-kB p65. ACSL1 inhibition reduced the TNFα-mediated phosphorylation of SAPK/JNK, c-Jun, ERK1/2, and NF-kB. In addition, increased NF-κB/AP-1 activity was inhibited in triacsin C treated cells. Altogether, our findings suggest that ACSL1/JNK/ERK/NF-kB axis plays an important role in the regulation of MMP-9 induced by TNFα in monocytic THP-1 cells.


Assuntos
NF-kappa B , Fator de Necrose Tumoral alfa , Humanos , Fator de Necrose Tumoral alfa/farmacologia , Sistema de Sinalização das MAP Quinases , Metaloproteinase 9 da Matriz/genética , Coenzima A Ligases/genética
12.
Med Princ Pract ; 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37634505

RESUMO

OBJECTIVE: Bariatric surgery is currently the most effective treatment for obesity, and procedures such as Roux-en Y gastric bypass and sleeve gastrectomy (SG) also result in rapid improvements in insulin sensitivity and glucose tolerance. In addition, these procedures cause changes in the secretion of various gut-derived hormones. The role these hormones play in the mechanism of the beneficial effects of bariatric surgery is still debated, but nonetheless, their importance provides inspiration for novel obesity-targeted pharmacotherapies. METHODS: Male Sprague Dawley rats were fed either regular chow or a cafeteria diet to induce obesity. A sub-group of the obese animals then underwent either sham surgery or SG. RESULTS: Following a 4-week recovery period, SG rats weighed significantly less than obese or sham-operated rats. Improvements in glucose tolerance and insulin sensitivity also occurred in the SG group, but these were not always statistically significant. We measured the intracellular lipid content of liver samples and found that obese rats showed signs of non-alcoholic fatty liver disease, which were significantly ameliorated by SG. There were significantly higher glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) responses to a standard mixed meal in the SG group, as well as paradoxically higher glucagon secretion. CONCLUSION: These data highlight the need for more specific anti-glucagon antibodies to characterize the changes in proglucagon-derived peptide concentrations that occur following SG. Further studies are required to determine whether these peptides contribute to the therapeutic effects of SG.

13.
Nutrients ; 15(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37513518

RESUMO

Leucine-rich α-2 glycoprotein1 (LRG1) has been shown to be associated with several health conditions; however, its association with iron deficiency anemia, especially in children, has not been previously explored. In this study, we investigated the association between LRG1 and several iron deficiency anemia markers, including hemoglobin (Hb), albumin, red cell distribution width (RDW), iron, ferritin, and Hb transferrin saturation. A total of 431 participants were included in this analysis aged between 11 and 14 years. Higher LRG1 levels were observed in children diagnosed with anemia [31.1 (24.6, 43.2) µg/mL] compared to non-anemic children [29.2 (22.7-35.95) µg/mL]. Statistically significant differences of LRG1 level across the three groups (tertiles) of Hb, iron, transferrin saturation, albumin, RDW, ferritin, and WBC were observed. Strong negative correlations were observed between LRG1 and Hb (Spearman's rho = -0.11, p = 0.021), albumin (Spearman's rho = -0.24, p < 0.001), iron (Spearman's rho = -0.25, p < 0.001), and Hb transferrin saturation (Spearman's rho = -0.24, p < 0.001), whereas circulating LRG1 levels were positively associated with RDW (Spearman's rho = 0.21, p < 0.001). In conclusion, our findings demonstrate for the first time the strong association between iron deficiency anemia markers and LRG1 in otherwise healthy school-aged children. However, further studies are needed to corroborate those results and to look for similar associations in other population subgroups.


Assuntos
Anemia Ferropriva , Criança , Humanos , Adolescente , Anemia Ferropriva/epidemiologia , Leucina , Ferro , Hemoglobinas/análise , Ferritinas , Transferrina/análise , Biomarcadores , Albuminas , Glicoproteínas
14.
Front Mol Neurosci ; 16: 1217992, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37475884

RESUMO

Introduction: Circadian rhythm maintains the sleep-wake cycle in biological systems. Various biological activities are regulated and modulated by the circadian rhythm, disruption of which can result in onset of diseases. Robust rhythms of phosphorylation profiles and abundances of PERIOD (PER) proteins are thought to be the master keys that drive circadian clock functions. The role of casein kinase 2 (CK2) in circadian rhythm via its direct interactions with the PER protein has been extensively studied; however, the exact mechanism by which it affects circadian rhythms at the molecular level is not known. Methods: Here, we propose an extended circadian rhythm model in Drosophila that incorporates the crosstalk between the PER protein and CK2. We studied the regulatory role of CK2 in the dynamics of PER proteins involved in circadian rhythm using the stochastic simulation algorithm. Results: We observed that variations in the concentration of CK2 in the circadian rhythm model modulates the PER protein dynamics at different cellular states, namely, active, weakly active, and rhythmic death. These oscillatory states may correspond to distinct pathological cellular states of the living system. We find molecular noise at the expression level of CK2 to switch normal circadian rhythm to any of the three above-mentioned circadian oscillatory states. Our results suggest that the concentration levels of CK2 in the system has a strong impact on its dynamics, which is reflected in the time evolution of PER protein. Discussion: We believe that our findings can contribute towards understanding the molecular mechanisms of circadian dysregulation in pathways driven by the PER mutant genes and their pathological states, including cancer, obesity, diabetes, neurodegenerative disorders, and socio-psychological disease.

15.
Interdiscip Sci ; 15(3): 452-464, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37389721

RESUMO

Diabetes mellitus significantly contributes to breast cancer progression, where hyperglycemia upregulates specific genes, leading to more aggressive tumor growth. In patients with BC that develop diabetes, neuregulin 1 (NRG1) and epidermal growth factor receptor 3 (ERBB3) overexpression exacerbate tumor growth and progression. Since the interaction between NRG1 and ERBB3 is critical for tumor growth, understanding the molecular mechanisms underlying NRG1-ERBB3 complex formation is essential for elucidating diabetes-assisted breast cancer progression. However, the key residues forming the NRG1-ERBB3 complex remain unknown. Here, we substituted specific residues in NRG1 with alanine and studied its interactions with ERBB3 using computational structural biology tools. We further screened the South African natural compounds database to target the complex's interface residues to discover potential inhibitors. The conformational stability and dynamic features of NRG1-WT, -H2A, -L3A, and -K35A complexed with ERBB3 were subjected to 400 ns molecular dynamics simulations. The free binding energies of all NRG1-ERBB3 complexes were calculated using the molecular mechanics-generalized Born surface area (MM/GBSA). The H2 and L3 alanine substitutions caused a loss of interaction with ERBB3 residue D73, weakening the interaction with ERBB3. Screening 1300 natural compounds identified four (SANC00643, SANC00824, SANC00975, and SANC00335) with the best potential to inhibit ERRB3-NRG1 coupling. The binding free energies for each complex were - 48.55 kcal/mol for SANC00643, - 47.68 kcal/mol for SANC00824, - 46.04 kcal/mol for SANC00975, and - 45.29 kcal/mol for SANC00335, showing their overall stronger binding with ERBB3 than NRG1 and their potential to act as ERBB3-NRG1 complex inhibitors. In conclusion, this complex may represent a residue-specific drug target to inhibit BC progression.


Assuntos
Neoplasias da Mama , Diabetes Mellitus , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neuregulina-1/genética , Neuregulina-1/metabolismo , Neuregulina-1/farmacologia , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo
16.
Cells ; 12(7)2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-37048092

RESUMO

Obesity is characterized by chronic low-grade inflammation. Obese people have higher levels of caveolin-1 (CAV1), a structural and functional protein present in adipose tissues (ATs). We aimed to define the inflammatory mediators that influence CAV1 gene regulation and the associated mechanisms in obesity. Using subcutaneous AT from 27 (7 lean and 20 obese) normoglycemic individuals, in vitro human adipocyte models, and in vivo mice models, we found elevated CAV1 expression in obese AT and a positive correlation between the gene expression of CAV1, tumor necrosis factor-alpha (TNF-α), and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). CAV1 gene expression was associated with proinflammatory cytokines and chemokines and their cognate receptors (r ≥ 0.447, p ≤ 0.030), but not with anti-inflammatory markers. CAV1 expression was correlated with CD163, indicating a prospective role for CAV1 in the adipose inflammatory microenvironment. Unlike wild-type animals, mice lacking TNF-α exhibited reduced levels of CAV1 mRNA/proteins, which were elevated by administering exogenous TNF-α. Mechanistically, TNF-α induces CAV1 gene transcription by mediating NF-κB binding to its two regulatory elements located in the CAV1 proximal regulatory region. The interplay between CAV1 and the TNF-α signaling pathway is intriguing and has potential as a target for therapeutic interventions in obesity and metabolic syndromes.


Assuntos
Caveolina 1 , NF-kappa B , Obesidade , Fator de Necrose Tumoral alfa , Animais , Humanos , Camundongos , Tecido Adiposo/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Inflamação/metabolismo , NF-kappa B/metabolismo , Obesidade/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
17.
Diabetes Metab Res Rev ; 39(6): e3643, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36988137

RESUMO

BACKGROUND: Plasma levels of angiopoietin-like protein 8 (ANGPTL8) are regulated by feeding and they increase following glucose ingestion. Because both plasma glucose and insulin increase following food ingestion, we aimed to determine whether the increase in plasma insulin and glucose or both are responsible for the increase in ANGPTL8 levels. METHODS: ANGPTL8 levels were measured in 30 subjects, 14 with impaired fasting glucose (IFG), and 16 with normal fasting glucose (NFG); the subjects received 75g glucose oral Glucose tolerance test (OGTT), multistep euglycaemic hyperinsulinemic clamp and hyperglycaemic clamp with pancreatic clamp. RESULTS: Subjects with IFG had significantly higher ANGPTL8 than NGT subjects during the fasting state (p < 0.05). During the OGTT, plasma ANGPTL8 concentration increased by 62% above the fasting level (p < 0.0001), and the increase above fasting in ANGPTL8 levels was similar in NFG and IFG individuals. During the multistep insulin clamp, there was a dose-dependent increase in plasma ANGPTL8 concentration. During the 2-step hyperglycaemic clamp, the rise in plasma glucose concentration failed to cause any change in the plasma ANGPTL8 concentration from baseline. CONCLUSIONS: In response to nutrient ingestion, ANGPTL8 level increased due to increased plasma insulin concentration, not to the rise in plasma glucose. The incremental increase above baseline in plasma ANGLPTL8 during OGTT was comparable between people with normal glucose tolerance and IFG.


Assuntos
Intolerância à Glucose , Hiperinsulinismo , Resistência à Insulina , Hormônios Peptídicos , Estado Pré-Diabético , Humanos , Glicemia/metabolismo , Intolerância à Glucose/metabolismo , Proteína 8 Semelhante a Angiopoietina , Insulina/metabolismo , Glucose/metabolismo , Jejum , Ingestão de Alimentos , Insulina Regular Humana , Nutrientes , Resistência à Insulina/fisiologia
18.
Cancers (Basel) ; 15(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36765912

RESUMO

Tumor microenvironment (TME) is the immediate environment where cancer cells reside in a tumor. It is composed of multiple cell types and extracellular matrix. Microenvironments can be restrictive or conducive to the progression of cancer cells. Initially, microenvironments are suppressive in nature. Stepwise accumulation of mutations in oncogenes and tumor suppressor genes enables cancer cells to acquire the ability to reshape the microenvironment to advance their growth and metastasis. Among the many genetic events, the loss-of-function mutations in tumor suppressor genes play a pivotal role. In this review, we will discuss the changes in TME and the ramifications on metastasis upon altered expression of tumor metastasis suppressor gene RKIP in breast cancer cells.

19.
Clin Kidney J ; 16(2): 355-366, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36755831

RESUMO

Background: Autosomal dominant polycystic kidney disease (ADPKD) is the most common renal monogenic disease, characterized by bilateral accumulation of renal fluid-filled cysts leading to progressive renal volume enlargement and gradual impairment of kidney function, often resulting in end-stage renal disease. Kuwait could provide valuable genetic insights about ADPKD, including intrafamilial phenotypic variation, given its large household size. This study aims to provide a comprehensive description of the pathogenic variants linked to ADPKD in the Kuwaiti population using multiple genetic analysis modalities and to describe and analyse the ADPKD phenotypic spectrum in terms of kidney function, kidney volume and renal survival. Methods: A total of 126 ADPKD patients from 11 multiplex families and 25 singletons were recruited into the study. A combination of targeted next-generation sequencing (tNGS), long-range polymerase chain reaction, Sanger sequencing and multiplex ligation-dependent probe amplification were utilized for genetic diagnosis. Clinical evaluation was conducted through renal function testing and ultrasonographic kidney volume analysis. Results: We identified 29 ADPKD pathogenic mutations from 36 families achieving an overall molecular genetic diagnostic rate of 112/126 (88.9%), including 29/36 (80.6%) in families. A total of 28/36 (77.8%) families had pathogenic mutations in PKD1, of which 17/28 (60.7%) were truncating, and 1/36 (2.8%) had a pathogenic variant in the IFT140 gene. A total of 20/29 (69%) of the identified ADPKD mutations were novel and described for the first time, including a TSC2-PKD1 contiguous syndrome. Clinical analysis indicated that genetically unresolved ADPKD cases had no apparent association between kidney volume and age. Conclusion: We describe for the first time the genetic landscape of ADPKD in Kuwait. The observed genetic heterogeneity underlining ADPKD along with the wide phenotypic spectrum reveal the level of complexity in disease pathophysiology. ADPKD genetic testing could improve the care of patients through improved disease prognostication, guided treatment and genetic counselling. However, to fulfil the potential of genetic testing, it is important to overcome the hurdle of genetically unresolved ADPKD cases.

20.
Front Endocrinol (Lausanne) ; 14: 1314211, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38189043

RESUMO

Angiopoietin-like proteins (ANGPTLs) mediate many metabolic functions. We had recently reported increased plasma levels of ANGPTL8 in obese adults of Arab ethnicity. However, data on ANGPTL8 levels in adolescent obesity is lacking. Arab population is characterized by a rapid transition, due to sudden wealth seen in the post-oil era, in lifestyle, food habits and extent of physical activity. We adopted a cross-sectional study on Arab adolescents from Kuwait to examine the role of ANGPTL8 in adolescent obesity. The study cohort included 452 adolescents, aged 11-14 years, recruited from Middle Schools across Kuwait. BMI-for-age growth charts were used to categorize adolescents as normal-weight, overweight, and obese. ELISA and bead-based multiplexing assays were used to measure plasma levels of ANGPTL8 and other inflammation and obesity-related biomarkers. Data analysis showed significant differences in the plasma levels of ANGPTL8 among the three subgroups, with a significant increase in overweight and obese children compared to normal-weight children. This observation persisted even when the analysis was stratified by sex. Multinomial logistic regression analysis illustrated that adolescents with higher levels of ANGPTL8 were 7 times more likely to become obese and twice as likely to be overweight. ANGPTL8 levels were correlated with those of hsCRP, leptin and chemerin. ANGPTL8 level had a reasonable prognostic power for obesity with an AUC of 0.703 (95%-CI=0.648-0.759). These observations relating to increased ANGPTL8 levels corresponding to increased BMI-for-age z-scores indicate that ANGPTL8, along with hsCRP, leptin and chemerin, could play a role in the early stages of obesity development in children. ANGPTL8 is a potential early marker for adolescent obesity and is associated with well-known obesity and inflammatory markers.


Assuntos
Proteína 8 Semelhante a Angiopoietina , Obesidade Infantil , Hormônios Peptídicos , Adolescente , Criança , Humanos , Proteína 8 Semelhante a Angiopoietina/sangue , Proteína C-Reativa , Estudos Transversais , Leptina , Sobrepeso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA