Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 5370, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005457

RESUMO

Cancer is one of the leading causes of death worldwide. The increasing prevalence and resistance to chemotherapy is responsible for driving the search of novel molecules to combat this disease. In search of novel compounds with pro-apoptotic potential, pyrazolo-pyridine and pyrazolo-naphthyridine derivatives were investigated against cervical cancer (HeLa) and breast cancer (MCF-7) cells. The anti-proliferative activity was determined through the MTT assay. Potent compounds were then analyzed for their cytotoxic and apoptotic activity through a lactate dehydrogenase assay and fluorescence microscopy after propidium iodide and DAPI staining. Flow cytometry was used to determine cell cycle arrest in treated cells and pro-apoptotic effect was verified through measurement of mitochondrial membrane potential and activation of caspases. Compounds 5j and 5k were found to be most active against HeLa and MCF-7 cells, respectively. G0/G1 cell cycle arrest was observed in treated cancer cells. Morphological features of apoptosis were also confirmed, and an increased oxidative stress indicated the involvement of reactive oxygen species in apoptosis. The compound-DNA interaction studies demonstrated an intercalative mode of binding and the comet assay confirmed the DNA damaging effects. Finally, potent compounds demonstrated a decrease in mitochondrial membrane potential and increased levels of activated caspase-9 and -3/7 confirmed the induction of apoptosis in treated HeLa and MCF-7 cells. The present work concludes that the active compounds 5j and 5k may be used as lead candidates for the development of lead drug molecules against cervical and breast cancer.


Assuntos
Antineoplásicos , Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Pontos de Checagem do Ciclo Celular , Apoptose , Caspases/metabolismo , Antineoplásicos/uso terapêutico , Células MCF-7 , Espécies Reativas de Oxigênio/metabolismo , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico , Naftiridinas/farmacologia , Naftiridinas/uso terapêutico , Proliferação de Células , Linhagem Celular Tumoral
2.
Biomed Res Int ; 2022: 5293349, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252449

RESUMO

Carbonic anhydrases (CAs and EC 4.2.1.1) are the Zn2+ containing enzymes which catalyze the reversible hydration of CO2 to carbonate and proton. If they are not functioning properly, it would lead towards many diseases including tumor. Synthesis of hydrazide-sulfonamide hybrids (19-36) was carried out by the reaction of aryl (10-11) and acyl (12-13) hydrazides with substituted sulfonyl chloride (14-18). Final product formation was confirmed by FT-IR, NMR, and EI-MS. Density functional theory (DFT) calculations were performed on all the synthesized compounds to get the ground-state geometries and compute NMR properties. NMR computations were in excellent agreement with the experimental NMR data. All the synthesized hydrazide-sulfonamide hybrids were in vitro evaluated against CA II, CA IX, and CA XII isozymes for their carbonic anhydrase inhibition activities. Among the entire series, only compounds 22, 32, and 36 were highly selective inhibitors of hCA IX and did not inhibit hCA XII. To investigate the binding affinity of these compounds, molecular docking studies of compounds 32 and 36 were carried out against both hCA IX and hCA XII. By using BioSolveIT's SeeSAR software, further studies to provide visual clues to binding affinity indicate that the structural elements that are responsible for this were also studied. The binding of these compounds with hCA IX was highly favorable (as expected) and in agreement with the experimental data.


Assuntos
Anidrase Carbônica II , Anidrases Carbônicas , Antígenos de Neoplasias/metabolismo , Anidrase Carbônica IX/metabolismo , Inibidores da Anidrase Carbônica , Anidrases Carbônicas/metabolismo , Hidrazinas/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Relação Estrutura-Atividade , Sulfonamidas/farmacologia
3.
Expert Opin Ther Pat ; 32(7): 743-751, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35333684

RESUMO

INTRODUCTION: Ectobucleotidases are a broad class of extracellular nucleotide and nucleoside hydrolyzing enzymes. Since they play a crucial role in mediating purinergic cell signalling, they are promising therapeutic targets for treatment of a range of disorders, including fibrosis, tumor metastasis, inflammation, multiple sclerosis, and autoimmune diseases. Hence selective inhibtors of ectonulceotidases are of great interest for therapeutic intervention. AREA COVERED: Many compounds have demonstrated promising inhibitory potential against ecto-nucleotide pyrophosphatase/phosphodiesterases (NPPs). The chemistry and clinical applications of NPP inhibitors patented between 2015 and 2020 are discussed in this review. EXPERT OPINION: In recent years, there has been a lot of effort towards finding effective and selective inhibitors of NPPs. Even though a number of inhibitors are known, only a few in vivo investigations have been published. In addition to IOA-289, which has passed Phase Ia clinical trials, potent NPP2/ATX inhibitor compounds such as BLD-0409, IPF and BBT-877 have been placed in phase I clinical studies. Some of the most promising NPP2/ATX inhibitors in recent years are closely related analogs of previously known inhibitors, such as PF-8380. Knowledge of the structure activity relationship of such promising inhibitors can potentially translate into the discovery of more potent and effective inhibitors of NPP.


Assuntos
Patentes como Assunto , Diester Fosfórico Hidrolases , Humanos , Diester Fosfórico Hidrolases/metabolismo , Pirofosfatases/metabolismo , Relação Estrutura-Atividade
4.
Bioorg Chem ; 112: 104957, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34020240

RESUMO

Members of the ectonucleoside triphosphate diphosphohydrolases (NTPDases) constitute the major family of enzymes responsible for the maintenance of extracellular levels of nucleotides and nucleosides by catalyzing the hydrolysis of nucleoside triphosphate (NTP) and nucleoside diphosphates (NDP) to nucleoside monophosphate (NMP). Although, NTPDase inhibitors can act as potential drug candidates for the treatment of various diseases, there is lack of potent as well as selective inhibitors of NTPDases. The current study describes the synthesis of a number of carboxamide derivatives that were tested on recombinant human (h) NTPDases. The most promising inhibitors were 2h (h-NTPDase1, IC50: 0.12 ± 0.03 µM), 2d (h-NTPDase2, IC50: 0.15 ± 0.01 µM) and 2a (h-NTPDase3, IC50: 0.30 ± 0.04 µM; h-NTPDase8, IC50: 0.16 ± 0.02 µM). Four compounds (2e, 2f, 2g and 2h) were associated with the selective inhibition of h-NTPDase1 while 2b was identified as a selective h-NTPDase3 inhibitor. Considering the importance of NTPDase3 in the regulation of insulin release, the NTPDase3 inhibitors were further investigated to elucidate their role in the insulin release. The obtained data suggested that compound 2a was actively participating in regulating the insulin release without producing any effect on NTPDase3 mRNA. Moreover, the most potent inhibitors were docked within the active site of respective enzyme and the observed interactions were in compliance with in vitro results. Hence, these compounds can be used as pharmacological tool to further investigate the role of NTPDase3 coupled to insulin release.


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Indóis/farmacologia , Simulação de Acoplamento Molecular , Fenil-Hidrazinas/farmacologia , Adenosina Trifosfatases/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Indóis/síntese química , Indóis/química , Estrutura Molecular , Fenil-Hidrazinas/síntese química , Fenil-Hidrazinas/química , Relação Estrutura-Atividade
5.
Bioorg Chem ; 107: 104525, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33317840

RESUMO

Hunting small molecules as anti-inflammatory agents/drugs is an expanding and successful approach to treat several inflammatory diseases such as cancer, asthma, arthritis, and psoriasis. Besides other methods, inflammatory diseases can be treated by lipoxygenase inhibitors, which have a profound influence on the development and progression of inflammation. In the present study, a series of new N-alkyl/aralky/aryl derivatives (7a-o) of 2-(4-phenyl-5-(1-phenylcarbamoyl)piperidine-4H-1,2,4-triazol-3-ylthio)acetamide was synthesized and screened for their inhibitory potential against the enzyme 15-lipoxygenase. The simple precursor ethyl piperidine-4-carboxylate (a) was successively converted into phenylcarbamoyl derivative (1), hydrazide (2), semicarbazide (3) and N-phenylated 5-(1-phenylcarbamoyl)piperidine-1,2,4-triazole (4), then in combination with electrophiles (6a-o) through further multistep synthesis, final products (7a-o) were generated. All the synthesized compounds were characterized by FTIR, 1H, 13C NMR spectroscopy, EIMS, and HREIMS spectrometry. Almost all the synthesized compounds showed excellent inhibitory potential against the tested enzyme. Compounds 7c, 7f, 7d, and 7g displayed potent inhibitory potential (IC50 9.25 ± 0.26 to 21.82 ± 0.35 µM), followed by the compounds 7n, 7h, 7e, 7a, 7b, 7l, and 7o with IC50 values in the range of 24.56 ± 0.45 to 46.91 ± 0.57 µM. Compounds 7c, 7f, 7d exhibited 71.5 to 83.5% cellular viability by MTT assay compared with standard curcumin (76.9%) when assayed at 0.125 mM concentration. In silico ADME studies supported the drug-likeness of most of the molecules. In vitro inhibition studies were substantiated by molecular docking wherein the phenyl group attached to the triazole ring was making a π-δ interaction with Leu607. This work reveals the possibility of a synthetic approach of compounds in relation to lipoxygenase inhibition as potential lead compounds in drug discovery.


Assuntos
Acetanilidas/farmacologia , Inibidores de Lipoxigenase/farmacologia , Triazóis/farmacologia , Acetanilidas/síntese química , Acetanilidas/metabolismo , Acetanilidas/farmacocinética , Araquidonato 15-Lipoxigenase/metabolismo , Humanos , Ligação de Hidrogênio , Inibidores de Lipoxigenase/síntese química , Inibidores de Lipoxigenase/metabolismo , Inibidores de Lipoxigenase/farmacocinética , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Proteínas de Soja/antagonistas & inibidores , Proteínas de Soja/metabolismo , Glycine max/enzimologia , Eletricidade Estática , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/metabolismo , Triazóis/farmacocinética
6.
Biomed Pharmacother ; 131: 110783, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33152941

RESUMO

Withdrawal from chronic nicotine has damaging effects on a variety of learning and memory tasks. Various Sulfonamides that act as carbonic anhydrase inhibitors have documented role in modulation of various cognitive, learning, and memory processing. We investigated the effects of 4-Fluoro-N-(4-sulfamoylbenzyl) Benzene Sulfonamide (4-FBS) on nicotine withdrawal impairments in rats using Morris water maze (MWM), Novel object recognition, Passive avoidance, and open field tasks. Also, Brain-derived neurotrophic factor (BDNF) profiling and in vivo field potential recording were assessed. Rats were exposed to saline or chronic nicotine 3.8 mg/kg subcutaneously for 14 days in four divided doses, spontaneous nicotine withdrawal was induced by quitting nicotine for 72 h (hrs). Animals received 4-FBS at 20, 40, and 60 mg/kg after 72 h of withdrawal in various behavioral and electrophysiological paradigms. Nicotine withdrawal causes a deficit in learning and long-term memory in the MWM task. No significant difference was found in novel object recognition tasks among all groups while in passive avoidance task nicotine withdrawal resulted in a deficit of hippocampus-dependent fear learning. Anxiety like behavior was observed during nicotine withdrawal. Plasma BDNF level was reduced during nicotine withdrawal as compared to the saline group reflecting mild cognitive impairment, stress, and depression. Withdrawal from chronic nicotine altered hippocampal plasticity, caused suppression of long-term potentiation (LTP) in the CA1 area of the hippocampus. Our results showed that 4-FBS at 40 and 60 mg/kg significantly prevented nicotine withdrawal-induced cognitive deficits in behavioral as well as electrophysiological studies. 4-FBS at 60 mg/kg upsurge nicotine withdrawal-induced decrease in plasma BDNF. We conclude that 4-FBS at 40 and 60 mg /kg effectively prevented chronic nicotine withdrawal-induced impairment in long term potentiation and cognitive performance.


Assuntos
Transtornos Cognitivos/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Animais , Ansiedade/tratamento farmacológico , Ansiedade/etiologia , Aprendizagem da Esquiva/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/sangue , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/fisiopatologia , Relação Dose-Resposta a Droga , Medo/efeitos dos fármacos , Hipocampo/patologia , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Nicotina/efeitos adversos , Ratos , Ratos Wistar , Síndrome de Abstinência a Substâncias/complicações , Tabagismo/psicologia
7.
Drug Des Devel Ther ; 14: 4511-4518, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33149549

RESUMO

INTRODUCTION: Physical, chemical, thermal injuries along with infectious diseases lead to acute pain with associated inflammation, being the primary cause of hospital visits. Moreover, neuropathic pain associated with diabetes is a serious chronic disease leading to high morbidity and poor quality of life. OBJECTIVE: Earlier multiple sulphonamides have been reported to have an antinociceptive and antiallodynic profile. 4-Fluoro-N-(4-sulfamoylbenzyl) Benzene Sulfonamide (4-FBS), a synthetic sulfonamide with reported carbonic anhydrase inhibitory activity, was investigated for its potential effects in mice model of acute and diabetic neuropathic pain. METHODS AND RESULTS: 4-FBS was given orally (p.o.) one hour before the test and then mice were screened for antinociceptive activity by using the tail immersion test, which showed significant antinociceptive effect at both 20 and 40 mg/kg doses. To explore the possible mechanisms, thermal analgesia of 4-FBS was reversed by the 5HT3 antagonist ondansetron 1mg/kg intraperitoneally (i.p.) and by the µ receptor antagonist naloxone (1 mg/kg i.p.), implying possible involvement of serotonergic and opioidergic pathways in the analgesic effect of 4-FBS. Diabetes was induced in mice by a single dose of streptozotocin (STZ) 200 mg/kg i.p. After two weeks, animals first became hyperalgesic and progressively allodynic in the fourth week, which was evaluated through behavioral parameters like thermal and mechanical tests. 4-FBS at 20 and 40 mg/kg p.o. significantly reversed diabetes-induced hyperalgesia and allodynia at 30, 60, 90, and 120 minutes. CONCLUSION: These findings are significant and promising while further studies are warranted to explore the exact molecular mechanism and the potential of 4-FBS in diabetic neuropathic pain.


Assuntos
Analgésicos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Neuropatias Diabéticas/tratamento farmacológico , Hiperalgesia/tratamento farmacológico , Dor/tratamento farmacológico , Administração Oral , Analgésicos/administração & dosagem , Analgésicos/química , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/química , Diabetes Mellitus Experimental/induzido quimicamente , Neuropatias Diabéticas/induzido quimicamente , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Hiperalgesia/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Estreptozocina , Relação Estrutura-Atividade
8.
Bioorg Chem ; 104: 104305, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33017718

RESUMO

Ectonucleotidases are a broad family of ectoenzymes that play a crucial role in purinergic cell signaling. Ecto-nucleotide pyrophosphatases/phosphodiesterases (NPPs) belong to this group and are important drug targets. In particular, NPP1 and NPP3 are known to be druggable targets for treatment of impaired calcification disorders (including pathological aortic calcification) and cancer, respectively. In this study, we investigated a series of sulfonate and sulfamate derivatives of benzofuran and benzothiophene as potent and selective inhibitors of NPP1 and NPP3. Compounds 1c, 1g, 1n, and 1s are the most active NPP1 inhibitors (IC50 values in the range 0.12-0.95 µM). Moreover, compounds 1e, 1f, 1j, and 1l are the most potent inhibitors of NPP3 (IC50 ranges from 0.12 to 0.95 µM). Compound 1d, 1f and 1t are highly selective inhibitors of NPP1 over NPP3, whereas compounds 1m and 1s are found to be highly selective towards NPP3 over NPP1. Structure-activity relationship (SAR) study has been discussed in detailed. With the aid of molecular docking studies, a common binding mode of these compounds and suramin (the standard inhibitor) was revealed, where the sulfonate group acts as a cation-binding moiety that comes in close contact with the zinc ion of the active site. Moreover, cytotoxic evaluation against MCF-7 and HT-29 cancer cell lines revealed that compound 1r is the most cytotoxic towards MCF-7 cell line with IC50 value of 0.19 µM. Compound 1r is more potent and selective against cancer cells than normal cells (WI-38) as compared to doxorubicin.


Assuntos
Antineoplásicos/farmacologia , Benzofuranos/farmacologia , Inibidores Enzimáticos/farmacologia , Ácidos Sulfônicos/farmacologia , Tiofenos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Benzofuranos/síntese química , Benzofuranos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Diester Fosfórico Hidrolases/metabolismo , Pirofosfatases/antagonistas & inibidores , Pirofosfatases/metabolismo , Relação Estrutura-Atividade , Ácidos Sulfônicos/síntese química , Ácidos Sulfônicos/química , Tiofenos/síntese química , Tiofenos/química , Células Tumorais Cultivadas
9.
Drug Des Devel Ther ; 14: 3777-3786, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32982182

RESUMO

INTRODUCTION: Behavioral sensitization is a phenomenon that develops from intermittent exposure to nicotine and other psychostimulants, which often leads to heightened locomotor activity and then relapse. Sulfonamides that act as carbonic anhydrase inhibitors have a documented role in enhancing dopaminergic tone and normalizing neuroplasticity by stabilizing glutamate release. OBJECTIVE: The aim of the current study was to explore synthetic sulfonamides derivative 4-fluoro-N-(4-sulfamoylbenzyl) benzene-sulfonamide (4-FBS) (with documented carbonic anhydrase inhibitory activity) on acquisition and expression of nicotine-induced behavioral sensitization. METHODS: In the acquisition phase, selected 5 groups of mice were exposed to saline or nicotine 0.5mg/kg intraperitoneal (i.p) for 7 consecutive days. Selected 3 groups were administered with 4-FBS 20, 40, and 60 mg/kg p.o. along with nicotine. After 3 days of the drug-free period, ie, day 11, a challenge dose of nicotine was injected to all groups except saline and locomotor activity was recorded for 30 minutes. In the expression phase, mice were exposed to saline and nicotine only 0.5 mg/kg i.p for 7 consecutive days. After 3 days of the drug-free period, ie, day 11, 4-FBS at 20, 40, and 60 mg/kg were administered to the selected groups, one hour after drug a nicotine challenge dose was administered, and locomotion was recorded. At the end of behavioral experiments, all animals were decapitated and the striatum was excised and screened for changes in adenosine levels, using HPLC-UV. RESULTS: Taken together, our findings showed that 4-FBS in all 3 doses, in both sets of experiments significantly attenuated nicotine-induced behavioral sensitization in mice. Additionally, 4-FBS at 60mg/kg significantly lowered the adenosine level in the striatum. CONCLUSION: The behavioral and adenosine modulation is promising, and more receptors level studies are warranted to explore the exact mechanism of action of 4-FBS.


Assuntos
Adenosina/antagonistas & inibidores , Comportamento Animal/efeitos dos fármacos , Derivados de Benzeno/farmacologia , Nicotina/antagonistas & inibidores , Antagonistas Nicotínicos/farmacologia , Sulfonamidas/farmacologia , Adenosina/metabolismo , Administração Oral , Animais , Derivados de Benzeno/administração & dosagem , Derivados de Benzeno/síntese química , Relação Dose-Resposta a Droga , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nicotina/administração & dosagem , Antagonistas Nicotínicos/administração & dosagem , Antagonistas Nicotínicos/síntese química , Sulfonamidas/administração & dosagem , Sulfonamidas/síntese química
10.
Eur J Pharmacol ; 832: 11-24, 2018 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-29763580

RESUMO

Cancer is the second leading cause of mortality worldwide. Therapeutic approach to cancer is a multi-faceted one, whereby many cellular/enzymatic pathways have been discovered as important drug targets for the treatment of cancer. A major disadvantage of most of the currently available anticancer drugs is their non-selective cytotoxicity towards cancerous as well as healthy cells. Another major hurdle in cancer therapy is the development of resistance to anticancer drugs. This necessitates the discovery of new molecules with potent and selective cytotoxic activity towards only cancerous cells, with minimum or no damage to the normal/healthy cells. Herein we report detailed investigation into the anticancer activity of sulfamoyl benz(sulfon)amides (1a-1g, 2a-2k) and 1H-pyrazol-4-yl benzamides (3a-3j) against three cancer cell lines, breast cancer cells (MCF-7), bone-marrow cancer cells (K-562) and cervical cancer cells (HeLa). For comparison, screening against healthy baby hamster kidney cells (BHK-21) was carried out. All compounds exhibited selective cytotoxicity towards cancerous cells. Cell cycle analysis was carried out using flow cytometry, followed by fluorescence microscopic analysis. DNA interaction and docking studies were also carried out.


Assuntos
Amidas/química , Amidas/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Simulação de Acoplamento Molecular , Amidas/metabolismo , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , DNA/química , DNA/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Conformação de Ácido Nucleico
11.
Expert Opin Ther Pat ; 28(4): 281-297, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29368977

RESUMO

INTRODUCTION: Quinazoline and quinazolinone scaffolds represent an important class of biologically active nitrogen heterocyclic compounds. A variety of marketed drugs are based on these moieties. A diverse range of molecules with quinazoline/quinazolinone moieties have been reported to exhibit broad spectrum of biological activities. AREAS COVERED: This review covers recent efforts in the synthesis and biological screening of quinazoline/quinazolinone based compounds from 2011-2016. EXPERT OPINION: Quinazoline and quinazolinones represent a diverse class of biologically active nitrogen heterocyclic compounds with immense therapeutic potential. Their ease of synthetic accessibility, and flexibility in structural modifications and functionalization further adds to their appeal in medicinal chemistry. A number of currently available drugs are based on quinazoline/quinazolinone scaffold. It is interesting to note that, among the recent patents available, a lot of them focus on the promising anticancer activity of quinazoline and quinazolinone containing compounds. However their biological activity is certainly not limited to anticancer only, they are also known to elicit a number of other biological and physiological effects in vitro and in vivo respectively. The interest in quinazolines and quinazolinones is ever growing, since they offer a fairly diverse chemical space for exploration of medicinal potential.


Assuntos
Desenho de Fármacos , Quinazolinas/farmacologia , Quinazolinonas/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Química Farmacêutica/métodos , Humanos , Neoplasias/tratamento farmacológico , Patentes como Assunto , Quinazolinas/química , Quinazolinonas/química
12.
Expert Opin Ther Pat ; 27(12): 1291-1304, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28870136

RESUMO

INTRODUCTION: Ectonucleotidases are a broad family of metallo-ectoenzymes that are responsible for hydrolysing a variety of nucleotides to nucleosides, hence orchestrating the activation of P1 and P2 cell receptors via controlled release of nucleotides and nucleosides. Many disorders such as impaired calcification including aortic calcification, neurological and immunological disorders, platelet aggregation, cell proliferation and metastasis. are characterized by an increase in expression of these ectonucleotidases. Consequently, selective inhibitors of ectonucleotidases are required for therapeutic intervention. Area covered: Several classes of compounds such as purine, nucleotide derivatives (e.g., ARL67156) and monoclonal antibodies, have shown promising ectonucleotidase inhibitory potential. This review discusses chemistry and therapeutic applications of ectonucleotidase inhibitors patented from 2011 to 2016. Expert opinion: All eukaryotic cells express nucleotide and nucleoside receptors on their cell surface and are capable of releasing extracellular nucleotides. Ectonucleotidases are a broad family of metallo-ectoenzymes that hydrolyze a variety of nucleotides to nucleosides. These extracellular nucleotides and nucleosides are important cell signalling molecules and mediate a variety of (patho)physiological processes by acting upon their respective P1 and/or P2 receptors. Discovery of molecules that can selectively inhibit or activate ectonucleotidases is crucial from therapeutic point of view, since it allows human intervention into purinergic cell signalling, thereby allowing us to modulate related (patho)physiological processes as desired.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Hidrolases/antagonistas & inibidores , Animais , Humanos , Hidrolases/metabolismo , Nucleosídeos/metabolismo , Nucleotídeos/metabolismo , Patentes como Assunto , Transdução de Sinais/efeitos dos fármacos
13.
Expert Opin Ther Pat ; 27(10): 1089-1110, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28673105

RESUMO

INTRODUCTION: From therapeutic point of view, it is often beneficial to enhance the expression of certain enzymes whose low expression is responsible for the observed ailment. Small molecules as activators of several enzymes have great biological potential as anti-microbial and anti-cancer agents, for the treatment of diabetes, obesity, metabolic disorders, and for the treatment of neurological disorders including Alzheimer's disease. This review covers patents describing small molecules as activators, and provides structural leads for the design of even more potent activators. Area covered: This review is focused on small molecules that have been explored as activators of enzymes in the last and current decade (2000-2016). Expert opinion: The ability to modulate activity of enzymes has long been a quest of medicinal chemistry. This has been the impetus behind the development of a plethora of drugs as enzyme inhibitors. However only a few enzyme activators as drugs have made it to the market. Disorders characterized by supressed enzyme activity can be treated by enhancing the activity of a specific enzyme.


Assuntos
Desenho de Fármacos , Ativadores de Enzimas/farmacologia , Enzimas/efeitos dos fármacos , Animais , Química Farmacêutica , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Enzimas/metabolismo , Humanos , Patentes como Assunto
14.
Expert Opin Ther Pat ; 27(1): 63-79, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27774821

RESUMO

INTRODUCTION: Schiff bases are synthetically accessible and structurally diverse compounds, typically obtained by facile condensation between an aldehyde, or a ketone with primary amines. Schiff bases contain an azomethine (-C = N-) linkage that stitches together two or more biologically active aromatic/heterocyclic scaffolds to form various molecular hybrids with interesting biological properties. Schiff bases are versatile metal complexing agents and have been known to coordinate all metals to form stable metal complexes with vast therapeutic applications. Areas covered: This review aims to provide a comprehensive overview of the various patented therapeutic applications of Schiff bases and their metal complexes from 2010 to 2015. Expert opinion: Schiff bases are a popular class of compounds with interesting biological properties. Schiff bases are also versatile metal complexing ligands and have been used to coordinate almost all d-block metals as well as lanthanides. Therapeutically, Schiff bases and their metal complexes have been reported to exhibit a wide range of biological activities such as antibacterial including antimycobacterial, antifungal, antiviral, antimalarial, antiinflammatory, antioxidant, pesticidal, cytotoxic, enzyme inhibitory, and anticancer including DNA damage.


Assuntos
Desenho de Fármacos , Metais/química , Bases de Schiff/química , Animais , Química Farmacêutica/métodos , Humanos , Ligantes , Patentes como Assunto
15.
Med Chem ; 12(1): 74-82, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26152145

RESUMO

In an attempt to discover novel anti-cancer agents and potent cholinesterase inhibitors, 11 azomethine-dihydroquinazolinone conjugates were evaluated against lung carcinoma cells and cholinesterases. Most of the compounds exhibited significant cytotoxicity at low micromolar concentrations and were less toxic to normal cells. After 24 h incubation period, 2i showed maximum cytotoxicity. The 4-bromine substituted compounds showed higher acetylcholinesterase (AChE) inhibitory activity than other screened compounds. The most active compound 2c, among the series, had an IC50 value 209.8 µM against AChE. The tested compounds showed less inhibition against butyrylcholinesterase. Molecular docking studies were performed in order to investigate the plausible binding modes of synthesized compounds. The compounds can be further optimized to treat cancer and Alzheimer's disease. These derivatives may open new pathways for introducing new therapies for curing cancer and senile dementia.


Assuntos
Antineoplásicos/farmacologia , Inibidores da Colinesterase/farmacologia , Hidrazonas/farmacologia , Quinazolinonas/farmacologia , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Animais , Antineoplásicos/síntese química , Butirilcolinesterase/metabolismo , Linhagem Celular Tumoral , Inibidores da Colinesterase/síntese química , Ensaios de Seleção de Medicamentos Antitumorais , Cavalos , Humanos , Hidrazonas/síntese química , Simulação de Acoplamento Molecular , Quinazolinonas/síntese química
16.
Mini Rev Med Chem ; 15(1): 41-51, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25694083

RESUMO

Alkaline phosphatase (AP, EC 3.1.3.1.) is a metalloenzyme that belongs to a family of ectonucleotidases. The other members of ectonucleotidase family are ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases), ecto-nucleotide pyrophosphatase/phosphodiesterases (E-NPPs) and ecto-5'-nucleotidase (e5'NT). These ectonucleotidases are responsible for hydrolyzing extracellular nucleotides to nucleosides including adenosine. Many of these extracellular nucleotides and adenosine are important signaling molecules that act on their respective receptors (adenosine activated P1 receptor; nucleotide activated P2 receptor, each having many sub-types) and are therefore responsible for triggering cellular responses that lead to important physiological and immunological changes. A dedicated, concerted cohort of ectonucleotidases is responsible for controlling the availability of these extracellular signaling molecules at their respective receptors. Inhibitors of these ectonucleotidases provide the means by which these cellular processes can be modulated. This mini review has been written in the wake of mounting evidence of potential therapeutic benefits associated with inhibition of alkaline phosphatases and aims to provide prolific leads to design more potent and selective AP inhibitors.


Assuntos
Fosfatase Alcalina/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Terapia de Alvo Molecular/tendências , Fosfatase Alcalina/química , Fosfatase Alcalina/metabolismo , Animais , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estrutura Molecular
17.
Med Res Rev ; 34(4): 703-43, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24115166

RESUMO

The modulatory role of extracellular nucleotides and adenosine in relevance to purinergic cell signaling mechanisms has long been known and is an object of much research worldwide. These extracellular nucleotides are released by a variety of cell types either innately or as a response to patho-physiological stress or injury. A variety of surface-located ecto-nucleotidases (of four major types; nucleoside triphosphate diphosphohydrolases or NTPDases, nucleotide pyrophosphatase/phosphodiesterases or NPPs, alkaline phosphatases APs or ALPs, and ecto-5'-nucleotidase or e5NT) are responsible for meticulously controlling the availability of these important signaling molecules (at their respective receptors) in extracellular environment and are therefore crucial for maintaining the integrity of normal cell functioning. Overexpression of many of these ubiquitous ecto-enzymes has been implicated in a variety of disorders including cell adhesion, activation, proliferation, apoptosis, and degenerative neurological and immunological responses. Selective inhibition of these ecto-enzymes is an area that is currently being explored with great interest and hopes remain high that development of selective ecto-nucleotidase inhibitors will prove to have many beneficial therapeutic implications. The aim of this review is to emphasize and focus on recent developments made in the field of inhibitors of ecto-nucleotidases and to highlight their structure activity relationships wherever possible. Most recent and significant advances in field of NTPDase, NPP, AP, and e5NT inhibitors is being discussed in detail in anticipation of providing prolific leads and relevant background for research groups interested in synthesis of selective ecto-nucleotidase inhibitors.


Assuntos
5'-Nucleotidase/antagonistas & inibidores , Fosfatase Alcalina/antagonistas & inibidores , Apirase/antagonistas & inibidores , Inibidores Enzimáticos/uso terapêutico , Diester Fosfórico Hidrolases/metabolismo , Pirofosfatases/antagonistas & inibidores , 5'-Nucleotidase/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Apirase/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Pirofosfatases/metabolismo , Compostos de Tungstênio/química , Compostos de Tungstênio/farmacologia , Compostos de Tungstênio/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA