Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 12(10)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36295808

RESUMO

The current research was designed to explore the Blepharispermum hirtum Oliver (Asteraceae) stem and leaves essential oil (EO) composition extracted through hydro-distillation using gas chromatography-mass spectrometry (GC-MS) analysis for the first time. The EOs of the stem and leaves of B. hirtum were comparatively studied for the in vitro antidiabetic and anticancer potential using in vitro α-glucosidase and an MTT inhibition assay, respectively. In both of the tested samples, the same number of fifty-eight compounds were identified and contributed 93.88% and 89.07% of the total oil composition in the EOs of the stem and leaves of B. hirtum correspondingly. However, camphene was observed as a major compound (23.63%) in the stem EO, followed by ß-selinene (5.33%) and ß-elemene (4.66%) and laevo-ß-pinene (4.38%). While in the EO of the leaves, the dominant compound was found to be 24-norursa-3,12-diene (9.08%), followed by ß-eudesmol (7.81%), ß-selinene (7.26%), thunbergol (5.84%), and caryophyllene oxide (5.62%). Significant antidiabetic potential was observed with an IC50 of 2.10 ± 0.57 µg/mL by the stem compared to the EO of the leaves of B. hirtum, having an IC50 of 4.30 ± 1.56 µg/mL when equated with acarbose (IC50 = 377.71 ± 1.34 µg/mL). Furthermore, the EOs offered considerable cytotoxic capabilities for MDA-MB-231. However, the EO of the leaves presented an IC50 = 88.4 ± 0.5 µg/mL compared to the EO of the stem of B. hirtum against the triple-negative breast cancer (MDA-MB-231) cell lines with an IC50 = 123.6 ± 0.8 µg/mL. However, the EOs were also treated with the human breast epithelial (MCF-10A) cell line, and from the results, it has been concluded that these oils did not produce much harm to the normal cell lines. Hence, the present research proved that the EOs of B. hirtum might be used to cure diabetes mellitus and human breast cancer. Moreover, further studies are considered to be necessary to isolate the responsible bioactive constituents to devise drugs for the observed activities.

2.
J Hazard Mater ; 423(Pt A): 127046, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34481398

RESUMO

Mangroves (Avicennia marina) growing in intertidal areas are often exposed to diesel spills, adversely damaging the ecosystem. Herein, we showed for the first time that mangrove seedlings' associations with bacteria could reprogram host-growth, physiology, and ability to degrade diesel. We found four bacterial strains [Sphingomonas sp.-LK11, Rhodococcus corynebacterioides-NZ1, Bacillus subtilis-EP1 Bacillus safensis-SH10] exhibiting significant growth during diesel degradation (2% and 5%, v/v) and higher expression of alkane monooxygenase compared to control. This is in synergy with reduced long-chain n-alkanes (C24-C30) during microbe-diesel interactions in the bioreactor. Among individual strains, SH10 exhibited significantly higher potential to improve mangrove seedling's morphology, anatomy and growth during diesel treatment in rhizosphere compared to control. This was also evidenced by reduced activities and gene expression of antioxidant enzymes (catalases, peroxidases, ascorbic peroxidases, superoxide dismutases and polyphenol peroxidases) and lipid peroxidation during microbe-diesel interactions. Interestingly, we noticed significantly higher soil-enzyme activities (phosphatases and glucosidases) and essential metabolites in seedling's rhizosphere after bacteria and diesel treatments. Degradation of longer n-alkane chains in the rhizosphere also revealed a potential pathway that benefits mangroves by bacterial strains during diesel contaminations. Current results support microbes' application to rhizoengineer plant growth, responses, and phytoextraction abilities in environments contaminated with diesel spills. AVAILABILITY OF DATA AND MATERIALS: The datasets generated during the current study are available in the NCBI GenBank ((https://www.ncbi.nlm.nih.gov).


Assuntos
Microbiologia do Solo , Poluentes do Solo , Biodegradação Ambiental , Ecossistema , Gasolina , Poluentes do Solo/análise
3.
Molecules ; 26(24)2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34946757

RESUMO

The current study aimed to explore the crude oils obtained from the n-hexane fraction of Scutellaria edelbergii and further analyzed, for the first time, for their chemical composition, in vitro antibacterial, antifungal, antioxidant, antidiabetic, and in vivo anti-inflammatory, and analgesic activities. For the phytochemical composition, the oils proceeded to gas chromatography-mass spectrometry (GC-MS) analysis and from the resultant chromatogram, 42 bioactive constituents were identified. Among them, the major components were linoleic acid ethyl ester (19.67%) followed by ethyl oleate (18.45%), linolenic acid methyl ester (11.67%), and palmitic acid ethyl ester (11.01%). Tetrazolium 96-well plate MTT assay and agar-well diffusion methods were used to evaluate the isolated oil for its minimum inhibitory concentrations (MIC), minimum bactericidal concentration (MBC), half-maximal inhibitory concentrations (IC50), and zone of inhibitions that could determine the potential antimicrobial efficacy's. Substantial antibacterial activities were observed against the clinical isolates comprising of three Gram-negative bacteria, viz., Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa, and one Gram-positive bacterial strain, Enterococcus faecalis. The oils were also effective against Candida albicans and Fusarium oxysporum when evaluated for their antifungal potential. Moreover, significant antioxidant potential with IC50 values of 136.4 and 161.5 µg/mL for extracted oil was evaluated through DPPH (1,1-Diphenyl-2-picryl-hydrazyl) and ABTS assays compared with standard ascorbic acid where the IC50 values were 44.49 and 67.78 µg/mL, respectively, against the tested free radicals. The oils was also potent, inhibiting the α-glucosidase (IC50 5.45 ± 0.42 µg/mL) enzyme compared to the standard. Anti-glucosidase potential was visualized through molecular docking simulations where ten compounds of the oil were found to be the leading inhibitors of the selected enzyme based on interactions, binding energy, and binding affinity. The oil was found to be an effective anti-inflammatory (61%) agent compared with diclofenac sodium (70.92%) via the carrageenan-induced assay. An appreciable (48.28%) analgesic activity in correlation with the standard aspirin was observed through the acetic acid-induced writhing bioassay. The oil from the n-hexane fraction of S. edelbergii contained valuable bioactive constituents that can act as in vitro biological and in vivo pharmacological agents. However, further studies are needed to uncover individual responsible compounds of the observed biological potentials which would be helpful in devising novel drugs.


Assuntos
Antibacterianos/análise , Antifúngicos/análise , Antioxidantes/análise , Inibidores de Glicosídeo Hidrolases/análise , Óleos de Plantas/análise , Scutellaria/química , Animais , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antioxidantes/farmacologia , Benzotiazóis/antagonistas & inibidores , Compostos de Bifenilo/antagonistas & inibidores , Carragenina , Edema/induzido quimicamente , Edema/tratamento farmacológico , Fungos/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas , Inibidores de Glicosídeo Hidrolases/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Hexanos/química , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Picratos/antagonistas & inibidores , Óleos de Plantas/farmacologia , Plantas Medicinais , Ácidos Sulfônicos/antagonistas & inibidores , alfa-Glucosidases/metabolismo
4.
J Food Sci Technol ; 51(3): 577-82, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24587535

RESUMO

This work evaluated the lipid oxidation and the changes in fatty acids in hot-smoked tuna (Thunnus albacares) as a function of brine concentration. Fresh, commercially harvested tuna fish samples were purchased from a local supermarket. The fish were first immersed for 30 min in a brine solution at 5, 10, or 15% sodium chloride concentration and were then smoked at 50 °C for 3 h followed by 1 h at 60 °C and 3 h at 105 °C. The fish were then dried for 17 h, cooled and stored at 4 °C. Oxidative rancidity was measured by the peroxide value (PV), and thiobarbituric acid number (TBA) and fatty acids profile by GC-MS. Oxidative rancidity increased with storage time. The PV and TBARS values were more pronounced for samples immersed in 10% brine solution during the first 27 days of storage, whereas the lowest increase was observed for samples treated with 15% salt. Fatty acid concentration exhibited changes after smoking, and this was varied with salt concentration. The palmitic acid and stearic acid, the two main saturated fatty acids in tuna, increased after smoking at all brine concentration, whereas the contents of oleic acid, eicosapentaenoic acid and docosahexaenoic acid decreased. In conclusion, 15% NaCl-treated tuna gave smoked product with less lipid oxidation and a fatty acid profile comparable to that for 5 and 10% NaCl-treated samples.

5.
Asian Pac J Trop Biomed ; 3(1): 69-73, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23570020

RESUMO

OBJECTIVE: To isolate and analyze the chemical composition in different crude extracts of from the leaves of locally grown of Thymus vulgaris L (T. vulgaris) by gas chromatography-mass spectrometry (GC-MS). METHODS: The shade dried leaves powder was extracted with methanol by using Soxhlet extractor. Methanol crude extracts of T. vulgaris and the derived fractions of hexane, chloroform, ethyl acetate and butanol were obtained. RESULTS: Qualitative analyses of various organic crude extracts of T. vulgaris by using GC-MS showed that there were different types of high and low molecular weight compounds. Most of the isolated and identified compounds by GC-MS in the crude extracts are basically biologically important. Further, the T. vulgaris leaf possessed certain characteristics that can be ascribed to cultivation on a domestic plantation. The crude extracts were prepared from the powder leaves of T. vulgaris for respective compounds can be chosen on the basis of above GC-MS analysis. CONCLUSIONS: All the major compounds were identified and characterized by spectroscopic method in different organic crude extracts of T. vulgaris are biologically active molecules. Thus the identification of a good number of compounds in various crude extracts of T. vulgaris might have some ecological role.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Extratos Vegetais/química , Folhas de Planta/química , Plantas Medicinais/química , Thymus (Planta)/química , Omã
6.
Nat Prod Commun ; 6(10): 1487-90, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22164790

RESUMO

The focus of the present study was on the influence of season on yield, chemical composition, antioxidant and antifungal activities of Omani basil (Ocimum basilicum) oil. The present study involved only one of the eight Omani basil varieties. The hydro-distilled essential oil yields were computed to be 0.1%, 0.3% and 0.1% in the winter, spring and summer seasons, respectively. The major components identified were L- linalool (26.5-56.3%), geraniol (12.1-16.5%), 1,8-cineole (2.5-15.1%), p-allylanisole (0.2-13.8%) and DL-limonene (0.2-10.4%). A noteworthy extra component was beta- farnesene, which was exclusively detected in the oil extracted during winter and spring at 6.3% and 5.8%, respectively. The essential oil composition over the different seasons was quite idiosyncratic, in which the principal components of one season were either trivial or totally absent in another. The essential oil extracted in spring exhibited the highest antioxidant activity (except DPPH scavenging ability) in comparison with the oils from other seasons. The basil oil was tested against pathogenic fungi viz. Aspergillus niger, A. fumigatus, Penicillium italicum and Rhizopus stolonifer using a disc diffusion method, and by determination of minimum inhibitory concentration. Surprisingly high antifungal values were found highlighting the potential of Omani basil as a preservative in the food and medical industries.


Assuntos
Produtos Agrícolas/química , Ocimum basilicum/química , Óleos Voláteis/química , Óleos de Plantas/química , Antifúngicos/química , Antifúngicos/farmacologia , Compostos de Bifenilo/química , Clima Desértico , Fungos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Omã , Picratos/química , Óleos de Plantas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA