Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arch Dermatol Res ; 315(9): 2709-2713, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37278910

RESUMO

Solid organ transplant recipients (SOTRs) are burdened with a significantly higher risk of squamous cell carcinoma (SCC) compared to the general population. Accumulating evidence suggests the potential influence of microbial dysbiosis on transplant outcomes. Based on these observations, we sought to identify differences in the cutaneous and gut microbiomes of SOTRs with and without a history of SCC. This case-control study collected and analyzed non-lesional skin and fecal samples of 20 SOTRs > 18 years old with either ≥ 4 diagnoses of SCC since most recent transplant (n = 10) or 0 diagnoses of SCC (n = 10). The skin and gut microbiomes were investigated with Next-Generation Sequencing, and analysis of variance (ANOVA) followed by Tukey pairwise comparison procedure was used to test for differences in taxonomic relative abundances and microbial diversity indices between the two cohorts. Analyses of the skin microbiome showed increased bacterial and reduced fungal diversity in SOTRs with a history of SCC compared to SOTRs without a history of SCC (bacterial median Shannon diversity index (SDI) = 3.636 and 3.154, p < 0.05; fungal SDI = 4.474 and 6.174, p < 0.05, respectively). Analyses of the gut microbiome showed reduced bacterial and fungal diversity in the SCC history cohort compared to the SCC history-negative cohort (bacterial SDI = 2.620 and 3.300, p < 0.05; fungal SDI = 3.490 and 3.812, p < 0.05, respectively). The results of this pilot study thus show a trend toward the bacterial and fungal communities of the gut and skin being distinct in SOTRs with a history of SCC compared to SOTRs without a history of SCC. It furthermore demonstrates the potential for microbial markers to be used in the prognostication of squamous cell carcinoma risk in solid organ transplant recipients.


Assuntos
Carcinoma de Células Escamosas , Microbioma Gastrointestinal , Transplante de Órgãos , Neoplasias Cutâneas , Humanos , Adolescente , Neoplasias Cutâneas/epidemiologia , Neoplasias Cutâneas/patologia , Estudos de Casos e Controles , Projetos Piloto , Carcinoma de Células Escamosas/epidemiologia , Carcinoma de Células Escamosas/etiologia , Carcinoma de Células Escamosas/patologia , Transplante de Órgãos/efeitos adversos , Transplante de Órgãos/métodos
2.
Dig Dis Sci ; 68(4): 1492-1499, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35986796

RESUMO

BACKGROUND: Increasing data indicates the gut flora including bacteria and fungi combined with environmental factors are important in the pathogenesis of colorectal cancer (CRC). Understanding differences in the microbiome in patients with colon neoplasia will foster the development of biomarkers for early detection. AIMS: Determine the association of microbiome with presence of adenomas and predicted CRC risk. METHODS: In subjects referred for colonoscopy, the NCI CRC risk assessment tool was completed and stool for microbiome analysis as well as fecal immunochemical test (FIT) were collected. We calculated the microbiome alpha diversity using the Shannon index as well as individual bacterial and fungal species. RESULTS: Among 34 patients, we identified 10 with one or more adenomas. Only 2 patients were FIT positive. The median predicted lifetime CRC risk was 2.75% and the prevalence of adenoma was higher in the fourth quartile (P < 0.001). The measured alpha diversity was somewhat higher in patients with adenomas (P = 0.07). We identified 4 bacterial species with an increased relative abundance among patients with adenomas [P < 0.5]. Lifetime CRC risk was associated with 2 specific bacterial species, P. distasonis & E. hermannii [P = 0.05 & 0.09, respectively]. No associations were seen with fungal species and adenoma prevalence or lifetime CRC risk. CONCLUSIONS: In addition to a strong correlation of predicted CRC risk and adenoma prevalence, we also found important differences in specific bacterial species and both adenoma prevalence and CRC risk. Larger trials are needed to potentially implement further data in the clinical setting.


Assuntos
Adenoma , Neoplasias do Colo , Neoplasias Colorretais , Microbioma Gastrointestinal , Humanos , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/patologia , Colonoscopia , Adenoma/diagnóstico , Adenoma/epidemiologia , Adenoma/patologia , Fezes , Detecção Precoce de Câncer
3.
Curr Issues Mol Biol ; 44(5): 2015-2028, 2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35678665

RESUMO

Gut microbiome balance plays a key role in human health and maintains gut barrier integrity. Dysbiosis, referring to impaired gut microbiome, is linked to a variety of diseases, including cancers, through modulation of the inflammatory process. Most studies concentrated on adenocarcinoma of different sites with very limited information on gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs). In this study, we have analyzed the gut microbiome (both fungal and bacterial communities) in patients with metastatic GEP-NENs. Fecal samples were collected and compared with matched healthy control samples using logistic regression distances utilizing R package MatchIt (version 4.2.0, Daniel E. Ho, Stanford, CA, USA). We examined differences in microbiome profiles between GEP-NENs and control samples using small subunit (SSU) rRNA (16S), ITS1, ITS4 genomic regions for their ability to accurately characterize bacterial and fungal communities. We correlated the results with different behavioral and dietary habits, and tumor features including differentiation, grade, primary site, and therapeutic response. All tests are two-sided and p-values ≤ 0.05 were considered statistically significant. Gut samples of 34 patients (12 males, 22 females, median age 64 years) with metastatic GEP-NENs (22 small bowel, 10 pancreatic, 1 gall bladder, and 1 unknown primary) were analyzed. Twenty-nine patients had well differentiated GEP-neuroendocrine tumors (GEP-NETs), (G1 = 14, G2 = 12, G3 = 3) and five patients had poorly differentiated GEP-neuroendocrine carcinomas (GEP-NECs). Patients with GEP-NENs had significantly decreased bacterial species and increased fungi (notably Candida species, Ascomycota, and species belonging to saccharomycetes) compared to controls. Patients with GEP-NECs had significantly enriched populations of specific bacteria and fungi (such as Enterobacter hormaechei, Bacteroides fragilis and Trichosporon asahii) compared to those with GEP-NETs (p = 0.048, 0.0022 and 0.034, respectively). In addition, higher grade GEP-NETs were associated with significantly higher Bacteroides fragilis (p = 0.022), and Eggerthella lenta (p = 0.00018) species compared to lower grade tumors. There were substantial differences associated with dietary habits and therapeutic responses. This is the first study to analyze the role of the microbiome environment in patients with GEP-NENs. There were significant differences between GEP-NETs and GEP-NECs, supporting the role of the gut microbiome in the pathogenesis of these two distinct entities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA