Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Pharm Des ; 26(4): 501-508, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32003684

RESUMO

G-protein-coupled receptors (GPCRs) are membrane-bound proteins, which are responsible for the detection of extracellular stimuli and the origination of intracellular responses. Both glucagon and glucagon-like peptide-1 (GLP-1) receptors belong to G protein-coupled receptor (GPCR) superfamily. Along with insulin, glucagon and GLP-1 are critical hormones for maintaining normal serum glucose within the human body. Glucagon generally plays its role in the liver through cyclic adenosine monophosphate (cAMP), where it compensates for the action of insulin. GLP-1 is secreted by the L-cells of the small intestine to stimulate insulin secretion and inhibit glucagon action. Despite extensive research efforts and the multiple approaches adopted, the glycemic control in the case of type-2 diabetes mellitus remains a major challenge. Therefore, a deep understanding of the structure-function relationship of these receptors will have great implications for future therapies in order to maintain a normal glucose level for an extended period of time. The antagonists of glucagon receptors that can effectively block the hepatic glucose production, as a result of glucagon action, are highly desirable for the tuning of the hyperglycemic state in type 2 diabetes mellitus. In the same manner, GLP-1R agonists act as important treatment modalities, thanks to their multiple anti-diabetic actions to attain normal glucose levels. In this review article, the structural diversity of glucagon and GLP-1 receptors along with their signaling pathways, site-directed mutations and significance in drug discovery against type-2 diabetes are illustrated. Moreover, the promising non-peptide antagonists of glucagon receptor and agonists of GLP-1 receptor, for the management of diabetes are presented with elaboration on the structure-activity relationship (SAR).


Assuntos
Diabetes Mellitus Tipo 2 , Receptor do Peptídeo Semelhante ao Glucagon 1/antagonistas & inibidores , Glucagon , Diabetes Mellitus Tipo 2/tratamento farmacológico , Peptídeo 1 Semelhante ao Glucagon , Humanos , Receptores de Glucagon/antagonistas & inibidores
2.
Eur J Pharm Sci ; 91: 131-7, 2016 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-27312477

RESUMO

Regardless of various strategies reported for cross-linking hyaluronic acid (HA) with 1,4-butanediol diglycidyl ether (BDDE), seeking new strategies that enhance cross-linking efficiency with a low level of cross-linker is essential. In this work, we studied the influence of mixing approach on two cross-linked BDDE-HA hydrogels prepared by two different mixing approaches; the large-batch mixing approach in which the hydrogel quantities were all mixed as a single lump in one container (hydrogel 1), and the small-batches mixing approach in which the hydrogel quantities were divided into smaller batches, mixed separately at various HA/BDDE ratios then combined in one reaction mixture (hydrogel 2). The result showed that the cross-linking reaction was mixing process-dependent. Degradation tests proved that, in relation to hydrogel 1, hydrogel 2 was more stable, and exhibited a higher resistance towards hyaluronidase activity. The swelling ratio of hydrogel 1 was significantly higher than that of hydrogel 2 in distilled water; however, in phosphate buffer saline, both hydrogels showed no significant difference. SEM images demonstrated that hydrogel 2 composite showed a denser network structure and smaller pore-size than hydrogel 1. In comparison to native HA, the occurrence of chemical modification in the cross-linked hydrogels was confirmed by FTIR and NMR distinctive peaks. These peaks also provided evidence that hydrogel 2 exhibited a higher degree of modification than hydrogel 1. In conclusion, the small-batches mixing approach proved to be more effective than large-batch mixing in promoting HA-HA entanglement and increasing the probability of BDDE molecules for binding with HA chains.


Assuntos
Butileno Glicóis/química , Reagentes de Ligações Cruzadas/química , Ácido Hialurônico/química , Hidrogéis/química , Composição de Medicamentos/métodos , Hialuronoglucosaminidase/química , Microscopia Eletrônica de Varredura , Espectroscopia de Prótons por Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA