Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37836189

RESUMO

Salinity and cadmium (Cd) contamination of soil are serious environmental issues threatening food security. This study investigated the role of salicylic acid (SA) and potassium (K) in enhancing the resilience of quinoa against the combined stress of salinity and Cd. Quinoa plants were grown under NaCl (0, 200 mM) and Cd (0, 100 µM) stress, with the addition of 0.1 mM SA and 10 mM K, separately or in combination. The joint stress of Cd and NaCl caused >50% decrease in plant growth, chlorophyll contents, and stomatal conductance compared to the control plants. The higher accumulation of Na and Cd reduced the uptake of K in quinoa tissues. The joint stress of salinity and Cd caused an 11-fold increase in hydrogen peroxide and 13-fold increase in thiobarbituric acid reactive substances contents, and caused a 61% decrease in membrane stability. An external supply of 0.1 mM SA and 10 mM K helped plants to better adapt to salinity and Cd stress with less of a reduction in plant biomass (shoot 19% and root 24%) and less accumulation of Na and Cd in plant tissues. The activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX) were enhanced by 11-fold, 10-fold, 7.7-fold, and 7-fold, respectively, when SA and K were applied together to the plants subjected to the joint stress of Cd and salinity. Based on the values of the bioconcentration factor (>1), the translocation factor (<1), and the higher tolerance index, it was clear that Cd-contaminated, salty soils could be stabilized with quinoa under the combined supply of SA and K.

2.
Environ Pollut ; 293: 118508, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34793914

RESUMO

Contamination of heavy metals is a serious threat, which causes threats to the environment. Our study aimed to determine the role of endophytic bacteria in Cd phytoremediation and heavy metal ATPase gene expression. Cadmium (Cd) resistant endophytic bacteria were isolated from Solanum nigrum on LB agar plates, contaminated with 0-30 mg/L Cd. The phosphate solubilization and indole-3-acetic acid (IAA) production of endophytes were estimated by growing them on Pikovskaya agar medium and GC-MS analysis, respectively. An experiment in a pot was performed to evaluate the effects of bacteria on rice plants contaminated with 5-25 mg/L of Cd. Expression of Cd response genes was quantified through qRT-PCR and Cd translocation from one part to another part of the plant was measured through the ICP. BLAST alignment of 16 S-rDNA gene sequences confirmed the bacterial isolates as Serratia sp. AI001 and Klebsiella sp. Strain AI002. Both strains tolerated Cd up to 25 mg/L and produced 27-30 µg/mL of IAA. Inoculation of AI001 and AI002 improved plant growth dynamics (i.e., plant length, biomass, chlorophyll contents), relieved electrolyte leakage, and improved reduced glutathione significantly (P < 0.05). The inoculation of AI001 and AI002 significantly (P < 0.05) induced the expression of heavy metal ATPase genes ie., "HMA2, HMA3, and HMA4" and Cd translocation compared to uninoculated plants. Both AI001 and AI002 exhibited very prominent plant-growth-promoting and Cd phytoremediation properties. The results revealed that isolates also contributed a lot to the expression of rice plant heavy metal ATPase genes and in the Cd translocation in the plant.


Assuntos
Metais Pesados , Poluentes do Solo , Adenosina Trifosfatases , Bactérias , Biodegradação Ambiental , Cádmio , Expressão Gênica , Metais Pesados/análise , Raízes de Plantas/química , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA