Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(11): e0276926, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36441723

RESUMO

Multifunctional drugs have shown great promise in biomedicine. Organisms with antimicrobial and anticancer activity in combination with antioxidant activity need further research. The Red Sea and the Arabian Gulf coasts were randomly sampled to find fungi with multifunctional activity. One hundred strains (98 fungi and 2 lichenized forms) were isolated from 15 locations. One-third of the isolates inhibited clinical bacterial (Staphylococcus aureus, Bacillus subtilis, Vibrio cholerae, Salmonella typhi, S. paratyphi) and fungal pathogens (Talaromycets marneffei, Malassezia globose, Cryptococcus neoformans, Candida albicans, Aspergillus fumigatus) and four cancer cell lines (Hep G2 liver, A-549 lung, A-431skin, MCF 7 breast cancer). Bacterial and cancer inhibition was often accompanied by a high antioxidant activity, as indicated by the principal component analysis (PCA). PCA also indicated that fungal and bacterial pathogens appeared to be inhibited mostly by different marine fungal isolates. Strains with multifunctional activity were found more from the Rea Sea than from the Arabian Gulf coasts. The highest potential for multifunctional drugs were observed for Acremonium sp., Acrocalymma sp., Acrocalymma africana, Acrocalymma medicaginis (activity reported for the first time), Aspergillus sp. Cladosporium oxysporum, Emericellopsis alkaline, Microdochium sp., and Phomopsis glabrae. Lung, skin, and breast cancers were inhibited 85%-97% by Acremonium sp, while most of the isolates showed low inhibition (ca 20%). The highest antifungal activity was observed for Acremonium sp., Diaporthe hubeiensis, Lasiodiplodia theobromae, and Nannizia gypsea. One Acremonium sp. is of particular interest to offer a multifunctional drug; it displayed both antifungal and antibacterial activity combined with high antioxidant activity (DPPH scavenging 97%). A. medicaginis displayed combined antibacterial, anticancer, and antioxidant activity being of high interest. Several genera and some species included strains with both high and low biological activities pointing out the need to study several isolates to find the most efficient strains for biomedical applications.


Assuntos
Acremonium , Neoplasias da Mama , Humanos , Feminino , Antioxidantes/farmacologia , Antifúngicos/farmacologia , Antibacterianos/farmacologia
2.
Saudi J Biol Sci ; 28(1): 224-231, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33424301

RESUMO

The search for novel biologically active molecules has extended to the screening of organisms associated with less explored environments. In this sense, Oceans, which cover nearly the 67% of the globe, are interesting ecosystems characterized by a high biodiversity that is worth being explored. As such, marine microorganisms are highly interesting as promising sources of new bioactive compounds of potential value to humans. Some of these microorganisms are able to survive in extreme marine environments and, as a result, they produce complex molecules with unique biological interesting properties for a wide variety of industrial and biotechnological applications. Thus, different marine microorganisms (fungi, myxomycetes, bacteria, and microalgae) producing compounds with antioxidant, antibacterial, apoptotic, antitumoral and antiviral activities have been already isolated. This review compiles and discusses the discovery of bioactive molecules from marine microorganisms reported from 2018 onwards. Moreover, it highlights the huge potential of marine microorganisms for obtaining highly valuable bioactive compounds.

3.
Bioprocess Biosyst Eng ; 44(6): 1063-1070, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33495932

RESUMO

Endophytic fungi isolated from desert plants are among the less known organisms with potentially valuable applications. The bioactivities of an endophytic fungus isolated from Aloe vera, a plant found in central regions of Asir desert, Saudi Arabia. Based on primary phytochemical screening, an efficient isolate was selected and identified according to the sequence analysis of the internal spacer regions ITS1, ITS4 and the 5.8S region as Preussia africana belonging to the family Sporormiaceae. The crude extract of this fungus was evaluated for its bioactivities. Under static conditions, the crude extract at a concentration of 500 µg/mL had a strong 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging rate of 87%, whereas a higher concentration (100 µg/mL) had an astounding wound healing effect (42.6% at 48 h) when compared to positive control. Moreover, the crude extract with a concentration of 50 µg/mL was active against almost all cancer cell lines such as HeLa (cervical cancer), Hep G2 (liver cancer), MCF-7 (breast cancer), A549 (lung cancer), LN-229 (glioblastoma), A-431 (skin cancer), and kidney cell line (HEK 293T). The results suggest that the endophytic fungus P. africana from A. vera has wide therapeutic applications against severe disease conditions.


Assuntos
Aloe/microbiologia , Ascomicetos , Endófitos , Ascomicetos/classificação , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Ascomicetos/metabolismo , Endófitos/classificação , Endófitos/genética , Endófitos/isolamento & purificação , Endófitos/metabolismo , Arábia Saudita
4.
Environ Res ; 194: 110672, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33373611

RESUMO

Marine algae have long been explored as food, feed, additives, drugs, and pesticides, yet now the framework is moving towards the algae mediated green synthesis of nanoparticles (NPs). This work is expanding step by step, like algae, are a rich origin of natural compounds. Recently, algae capped and stabilized NPs have picked up far and wide consideration as a less toxic, easy handling, cost effective, eco-friendly, usage in several science fields in nano size, safer to use, and greener method. The natural substance from algae acts as capping or reducing and stabilizing agent in the metal salts to metal, metal oxide, or bimetallic NPs conversion. The NPs using algae could either be intracellular or extracellular relying upon the area of NPs. Among the different scope of algae, reviews are explored in the previous report, still, different NPs using algae and their characterization, mechanism of activity is yet to be summarized. Because of the biocompatibility, good and remarkable physicochemical properties of NPs, the algal biosynthesized NPs have additionally been read for their biomedical applications, which include antibacterial, antioxidant, free radical scavenging, antifungal, anticancer, and biocompatibility properties. In this survey, the reasoning behind the algae mediated biosynthesis of various NPs from different algae origin have been explored. Besides, a piece of knowledge into the component of biosynthesis of NPs from marine algae and their biomedical applications has been summarized.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Antibacterianos , Antioxidantes , Nanopartículas Metálicas/toxicidade , Extratos Vegetais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA