Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 19572, 2024 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-39174578

RESUMO

Sepsis is a pathological and biochemical disorder induced by numerous infections, leading to critical illness and a high mortality rate worldwide. Vincamine is an indole alkaloid compound obtained from the leaves of Vinca minor. The present study aims to investigate the hepato-protective activity of vincamine during colon ligation puncture (CLP)-induced sepsis at the molecular level. Sepsis was induced using the CLP model. Liver function enzymes such as ALT and AST were analyzed. The hepatic antioxidant status (SOD and GSH), lipid peroxidation (MDA), the pro-inflammatory cytokines (TNFα, IL-6, and IL-1ß), bax, bcl2, and cleaved caspase 3 proteins were estimated. Nrf-2 and Keap-1 protein expression was evaluated using western blotting. Histopathological investigation of liver tissues was also performed. CLP-induced sepsis led to liver injury through the elevation of ALT and AST liver enzymes. Oxidative stress was initiated during CLP via the suppression of hepatic GSH content and SOD activity and the elevation of MDA. The inflammatory condition was activated by the upregulation of TNFα, IL-6, IL-1ß, and Keap-1 and the downregulation of Nrf-2 proteins. The apoptosis was initiated through the activation of bax and cleaved caspase 3 protein expression and inhibition of bcl2 protein expression. However, vincamine significantly improved the hepatic histological abnormalities and decreased liver enzymes (ALT and AST). It ameliorated oxidative stress, as evidenced by reducing the hepatic MDA content and increasing the SOD activity and GSH content. Moreover, vincamine reduced the hepatic content of TNFα, IL-6, IL-1ß, and Keap-1 and increased Nrf-2 protein expression. Additionally, it upregulated bcl2 protein expression and downregulated bax and cleaved caspase 3 protein expression. Vincamine exhibited hepato-protective potential during CLP-induced sepsis via the cross-connection of antioxidant, anti-inflammatory, and anti-apoptotic activities by modulating TNFα/IL-6/IL-1ß/Nrf-2/Keap-1 and regulating bax/bcl2/cleaved caspase 3 signaling pathways.


Assuntos
Apoptose , Proteína 1 Associada a ECH Semelhante a Kelch , Fígado , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Sepse , Transdução de Sinais , Fator de Necrose Tumoral alfa , Sepse/metabolismo , Sepse/tratamento farmacológico , Sepse/complicações , Estresse Oxidativo/efeitos dos fármacos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Masculino , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Colo/metabolismo , Colo/patologia , Colo/efeitos dos fármacos , Ratos , Ligadura , Modelos Animais de Doenças
2.
bioRxiv ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38798338

RESUMO

Multiple Myeloma (MM) remains incurable despite advances in treatment options. Although tumor subtypes and specific DNA abnormalities are linked to worse prognosis, the impact of immune dysfunction on disease emergence and/or treatment sensitivity remains unclear. We established a harmonized consortium to generate an Immune Atlas of MM aimed at informing disease etiology, risk stratification, and potential therapeutic strategies. We generated a transcriptome profile of 1,149,344 single cells from the bone marrow of 263 newly diagnosed patients enrolled in the CoMMpass study and characterized immune and hematopoietic cell populations. Associating cell abundances and gene expression with disease progression revealed the presence of a proinflammatory immune senescence-associated secretory phenotype in rapidly progressing patients. Furthermore, signaling analyses suggested active intercellular communication involving APRIL-BCMA, potentially promoting tumor growth and survival. Finally, we demonstrate that integrating immune cell levels with genetic information can significantly improve patient stratification.

3.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 947-958, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37548662

RESUMO

PURPOSE: Globally, sepsis, which is a major health issue resulting from severe infection-induced inflammation, is the fifth biggest cause of death. This research aimed to evaluate, for the first time, the molecular effects of gabapentin's possible nephroprotective potential on septic rats by cecal ligation and puncture (CLP). METHODS: Sepsis was produced by CLP in male Wistar rats. Evaluations of histopathology and renal function were conducted. MDA, SOD, GSH, TNF-α, IL-1ß, and IL-6 levels were measured. qRT-PCR was utilized to determine the expression of Bax, Bcl-2, and NF-kB genes. The expression of Nrf-2 and HO-1 proteins was examined by western blotting. RESULTS: CLP caused acute renal damage, elevated the blood levels of creatinine, BUN, TNF-α, IL-1ß, and IL-6, reduced the expression of Nrf-2 and HO-1 proteins and the Bcl-2 gene expression, and upregulated NF-kB and Bax genes. Nevertheless, gabapentin dramatically diminished the degree of the biochemical, molecular, and histopathological alterations generated by CLP. Gabapentin reduced the levels of proinflammatory mediators and MDA, improved renal content of GSH and SOD, raised the expression of Nrf-2 and HO-1 proteins and Bcl-2 gene, and reduced the renal expression of NF-kB and Bax genes. CONCLUSION: Gabapentin mitigated the CLP-induced sepsis-related acute kidney injury through up-regulating Nrf-2/HO-1 pathway, repressing apoptosis, and attenuating the oxidative stress status by reducing the levels of the proinflammatory mediators and enhancing the antioxidant status.


Assuntos
Injúria Renal Aguda , Sepse , Ratos , Masculino , Animais , NF-kappa B/metabolismo , Gabapentina/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Proteína X Associada a bcl-2/metabolismo , Interleucina-6/metabolismo , Ratos Wistar , Transdução de Sinais , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/etiologia , Estresse Oxidativo , Sepse/complicações , Sepse/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Apoptose , Superóxido Dismutase/metabolismo
4.
Life Sci ; 334: 122210, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37883863

RESUMO

AIM: Sepsis is a serious inflammatory response to infection with an annual incidence rate of >48 million cases and 11 million fatalities worldwide. Furthermore, sepsis remains the world's fifth-greatest cause of death. For the first time, the current study aims to evaluate the possible hepatoprotective benefits of LCZ696, a combination of an angiotensin receptor blocker (valsartan) and a neprilysin inhibitor prodrug (sacubitril), on cecal ligation and puncture (CLP)-induced sepsis in rats. MAIN METHODS: CLP was employed to induce sepsis. Hepatic malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD), interleukin-6 (IL-6), IL-1ß, tumor necrosis factor-alpha (TNF-α), and caspase 3 were assessed using ELISA. Serum alanine transaminase (ALT) and aspartate transaminase (AST) were also measured. Western blot assay was used to determine the expression of JNK1/2 and P38 proteins. The histology of liver tissues was also examined. KEY FINDINGS: CLP resulted in significant elevation of AST, ALT, MDA, IL-6, IL-1ß, TNF-α, and caspase 3 levels, and up-regulation of p/t JNK1/2, and p/t P38 proteins, as compared to the sham group. However, level of GSH, and SOD activity were reduced in CLP group. LCZ696 significantly improved all the previously mentioned biochemical and histological abnormalities better than using valsartan alone. SIGNIFICANCE: LCZ696 substantially ameliorated CLP-induced liver damage, compared to valsartan, by reducing proinflammatory mediators, inhibiting the JNK1/2 and P38 signaling pathway, and attenuating apoptosis.


Assuntos
Hepatopatias , Sepse , Animais , Ratos , Apoptose , Caspase 3 , Interleucina-6 , Estresse Oxidativo , Sepse/complicações , Sepse/tratamento farmacológico , Transdução de Sinais , Superóxido Dismutase , Fator de Necrose Tumoral alfa , Valsartana/farmacologia , Valsartana/uso terapêutico
5.
Molecules ; 28(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37375218

RESUMO

Idiopathic pulmonary fibrosis is a progressive, irreversible lung disease that leads to respiratory failure and death. Vincamine is an indole alkaloid obtained from the leaves of Vinca minor and acts as a vasodilator. The present study aims to investigate the protective activity of vincamine against EMT in bleomycin (BLM)-induced pulmonary fibrosis via assessing the apoptotic and TGF-ß1/p38 MAPK/ERK1/2 signaling pathways. In bronchoalveolar lavage fluid, protein content, total cell count, and LDH activity were evaluated. N-cadherin, fibronectin, collagen, SOD, GPX, and MDA levels were determined in lung tissue using ELISA. Bax, p53, bcl2, TWIST, Snai1, and Slug mRNA levels were examined using qRT-PCR. Western blotting was used to assess the expression of TGF-ß1, p38 MAPK, ERK1/2, and cleaved caspase 3 proteins. H & E and Masson's trichrome staining were used to analyze histopathology. In BLM-induced pulmonary fibrosis, vincamine reduced LDH activity, total protein content, and total and differential cell count. SOD and GPX were also increased following vincamine treatment, while MDA levels were decreased. Additionally, vincamine suppressed the expression of p53, Bax, TWIST, Snail, and Slug genes as well as the expression of factors such as TGF-ß1, p/t p38 MAPK, p/t ERK1/2, and cleaved caspase 3 proteins, and, at the same time, vincamine increased bcl2 gene expression. Moreover, vincamine restored fibronectin, N-Catherine, and collagen protein elevation due to BLM-induced lung fibrosis. In addition, the histopathological examination of lung tissues revealed that vincamine attenuated the fibrotic and inflammatory conditions. In conclusion, vincamine suppressed bleomycin-induced EMT by attenuating TGF-ß1/p38 MAPK/ERK1/2/TWIST/Snai1/Slug/fibronectin/N-cadherin pathway. Moreover, it exerted anti-apoptotic activity in bleomycin-induced pulmonary fibrosis.


Assuntos
Fibrose Pulmonar , Vincamina , Ratos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Bleomicina/efeitos adversos , Fator de Crescimento Transformador beta1/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Caspase 3/metabolismo , Transição Epitelial-Mesenquimal , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Pulmão/metabolismo , Colágeno/metabolismo , Superóxido Dismutase/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
Life Sci ; 320: 121562, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36907325

RESUMO

AIMS: Sepsis is a severe inflammatory response to infection with an incidence rate exceeding 48 million cases and 11 million sepsis-related deaths yearly. Furthermore, sepsis remains the fifth most common cause of death worldwide. The present study aimed to examine, for the first time, the potential hepatoprotective activity of gabapentin on cecal ligation and puncture (CLP)-induced sepsis in rats at the molecular level. MAIN METHODS: CLP was used as a model of sepsis in male Wistar rats. Histological examination and liver functions were evaluated. Levels of MDA, GSH, SOD, IL-6, IL-1ß, and TNF-α were investigated using ELISA. mRNA levels of Bax, Bcl-2, and NF-kB were assessed by qRT-PCR. Western blotting investigated the expression of ERK1/2, JNK1/2, and cleaved caspase 3 proteins. KEY FINDINGS: CLP resulted in liver damage, elevated serum levels of ALT, AST, ALP, MDA, TNF-α, IL-6, and IL-1ß, increased expression of ERK1/2, JNK1/2, and cleaved caspase 3 proteins, and upregulated Bax and NF-κB genes expression while it down-regulated Bcl-2 gene expression. However, gabapentin treatment significantly reduced the severity of CLP-induced biochemical, molecular, and histopathological changes. Gabapentin attenuated the levels of the proinflammatory mediators, decreased the expression of JNK1/2, ERK1/2, and cleaved caspase 3 proteins, suppressed Bax and NF-κB genes expression and increased the expression of the Bcl-2 gene. SIGNIFICANCE: Consequently, Gabapentin reduced hepatic injury resulting from CLP-induced sepsis by reducing proinflammatory mediators, attenuating apoptosis, and inhibiting the intracellular MAPK (ERK1/2, JNK1/2)-NF-kB signaling pathway.


Assuntos
NF-kappa B , Sepse , Ratos , Masculino , Animais , NF-kappa B/metabolismo , Caspase 3/metabolismo , Gabapentina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Sistema de Sinalização das MAP Quinases , Interleucina-6/metabolismo , Proteína X Associada a bcl-2/metabolismo , Ratos Wistar , Transdução de Sinais , Estresse Oxidativo , Punções , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/genética , Apoptose
7.
Cells ; 12(1)2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36611978

RESUMO

Renal ischemia/reperfusion (IR) injury is characterized by an unexpected impairment of blood flow to the kidney. Azilsartan is an angiotensin receptor blocker that is approved for the management of hypertension. The present study aimed to investigate, on molecular basics, the nephroprotective activity of azilsartan on renal IR injury in rats. Rats were assigned into four groups: (1) Sham group, (2) Azilsartan group, (3) IR group, and (4) IR/Azilsartan-treated group. Histological examination and renal function were evaluated. Levels of KIM-1, HMGB1, caspase 3, GPX, SOD, NF-κB, and p53 proteins were investigated using ELISA. mRNA levels of IL-1ß, IL6, IL10, TNF-α, NF-κB, p53, and bax were assessed by qRT-PCR. Expression of p38, JNK, and ERK1/2 proteins was investigated by Western blotting. IR injury resulted in tissue damage, elevation of creatinine, BUN, KIM-1, HMGB1, caspase 3, NF-κB, and p53 levels, decreasing GPX and SOD activities, and up-regulation of NF-κB, IL-1ß, IL6, TNF-α, p53, and bax genes. Furthermore, it up-regulated the expression of phosphorylated/total ratio of p38, ERK1/2, and JNK proteins. Interestingly, treatment of the injured rats with azilsartan significantly alleviated IR injury-induced histopathological and biochemical changes. It reduced the creatinine, BUN, KIM-1, HMGB1, caspase-3, NF-κB, and p53 levels, elevated GPX and SOD activities, down-regulated the expression of NF-κB, IL-1ß, IL6, TNF-α, p53, and bax genes, and up-regulated IL10 gene expression. Furthermore, it decreased the phosphorylated/total ratio of p38, ERK1/2, and JNK proteins. Azilsartan exhibited nephroprotective activity in IR-injured rats via its antioxidant effect, suppression of inflammation, attenuation of apoptosis, and inhibition of HMGB1/NF-κB/p38/ERK1/2/JNK signaling pathway.


Assuntos
Proteína HMGB1 , Traumatismo por Reperfusão , Ratos , Animais , NF-kappa B/metabolismo , Caspase 3/metabolismo , Transdução de Sinais , Sistema de Sinalização das MAP Quinases , Fator de Necrose Tumoral alfa/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteína HMGB1/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Creatinina/metabolismo , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Rim , Traumatismo por Reperfusão/metabolismo , Apoptose , Superóxido Dismutase/metabolismo
8.
Molecules ; 27(22)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36431925

RESUMO

Metastatic breast cancer is an incurable form of breast cancer that exhibits high levels of epithelial-mesenchymal transition (EMT) markers. Angiotensin II has been linked to various signaling pathways involved in tumor cell growth and metastasis. The aim of this study is to investigate, for the first time, the anti-proliferative activity of azilsartan, an angiotensin II receptor blocker, against breast cancer cell lines MCF-7 and MDA-MB-231 at the molecular level. Cell viability, cell cycle, apoptosis, colony formation, and cell migration assays were performed. RT-PCR and western blotting analysis were used to explain the molecular mechanism. Azilsartan significantly decreased the cancer cells survival, induced apoptosis and cell cycle arrest, and inhibited colony formation and cell migration abilities. Furthermore, azilsartan reduced the mRNA levels of NF-kB, TWIST, SNAIL, SLUG and bcl2, and increased the mRNA level of bax. Additionally, azilsartan inhibited the expression of IL-6, JAK2, STAT3, MMP9 and bcl2 proteins, and increased the expression of bax, c-PARP and cleaved caspase 3 protein. Interestingly, it reduced the in vivo metastatic capacity of MDA-MBA-231 breast cancer cells. In conclusion, the present study revealed, for the first time, the anti-proliferative, apoptotic, anti-migration and EMT inhibition activities of azilsartan against breast cancer cells through modulating NF-kB/IL-6/JAK2/STAT3/MMP9, TWIST/SNAIL/SLUG and apoptosis signaling pathways.


Assuntos
Neoplasias da Mama , Transição Epitelial-Mesenquimal , Humanos , Feminino , NF-kappa B/metabolismo , Interleucina-6/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proteína X Associada a bcl-2/metabolismo , Linhagem Celular Tumoral , RNA Mensageiro , Janus Quinase 2/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
9.
Molecules ; 27(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36432094

RESUMO

Fluoroquinolones (FQs) are synthetic broad-spectrum antimicrobial agents that have been recently repurposed to anticancer candidates. Designing new derivatives of FQs with different moieties to target DNA topoisomerases could improve their anticancer efficacy. The present study aimed to synthesize a novel ciprofloxacin derivative, examine its anticancer activity against HepG2 and A549 cancer cells, and investigate the possible molecular mechanism underlying this activity by examining its ability to inhibit the topo I/II activity and to induce the apoptotic and necro-apoptotic pathways. Molecular docking, cell viability, cell migration, colony formation, cell cycle, Annexin V, lactate dehydrogenase (LDH) release, ELISA, and western blotting assays were utilized. Molecular docking results showed that this novel ciprofloxacin derivative exerted dual topo I and topo II binding and inhibition. It significantly inhibited the proliferation of A549 and HepG2 cancer cells and decreased their cell migration and colony formation abilities. In addition, it significantly increased the % of apoptotic cells, caused cell cycle arrest at G2/M phase, and elevated the LDH release levels in both cancer cells. Furthermore, it increased the expression of cleaved caspase 3, RIPK1, RIPK3, and MLKL proteins. This novel ciprofloxacin derivative exerted substantial dual inhibition of topo I/II enzyme activities, showed antiproliferative activity, suppressed the cell migration and colony formation abilities for A549 and HepG2 cancer cells and activated the apoptotic pathway. In addition, it initiated another backup deadly pathway, necro-apoptosis, through the activation of the RIPK1/RIPK3/MLKL pathway.


Assuntos
DNA Topoisomerases Tipo I , Neoplasias , Apoptose , Ciprofloxacina/farmacologia , DNA Topoisomerases Tipo I/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Simulação de Acoplamento Molecular , Proteínas Quinases/metabolismo
10.
Int J Pharm ; 621: 121781, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35489604

RESUMO

The present work deals with the development of metformin-loaded ethosomes for localized treatment of melanoma and wound healing. Different ethosomal formulations were prepared using different concentrations of ethanol adopting injection technique. The developed formulations were investigated for entrapment efficiency, ex-vivo skin permeation, vesicle size, morphology and permeation kinetics. The optimized formulation was loaded in 5 % carbomer gel that was evaluated for skin permeation, cytotoxic effect against melanoma mice B16 cell line and for wound healing action. Ethosomes having 30 % v/v ethanol displayed superior entrapment for metformin % (55.3 ± 0.07); and a highly efficient permeation via mice skin (85.8 ± 3.7). The related carbomer ethosomal gel exhibited higher skin permeation compared to the untreated metformin gel (P < 0.001). The metformin ethosomes had a substantial antiproliferative activity against melanoma B16 cells compared to corresponding metformin solution as shown by the lower IC50 values (56.45 ± 1.47 and 887.3 ± 23.2, respectively, P < 0.05) and tumour cell viability (P < 0.05). The ethosomal system had a significant wound healing action in mice (80.5 ± 1.9%) that was superior to that of the marketed product Mebo® ointment (56 ± 1 %), P < 0.05. This ethosomal system demonstrated outstanding induction of the mRNA levels of growth factors (IGF-1, FGF-1, PDGF-B and TGF-ß) that are essential in the healing process. Those findings were supported by histopathologic examination of wound sections of different treated groups. Thus, the study proved that metformin ethosomes as a promising drug delivery system and a conceivable therapeutic approach for treatment of melanoma and wound healing.


Assuntos
Melanoma , Metformina , Administração Cutânea , Animais , Aptidão , Linhagem Celular , Etanol/farmacologia , Lipossomos/farmacologia , Melanoma/metabolismo , Metformina/farmacologia , Camundongos , Pele/metabolismo , Absorção Cutânea , Cicatrização
11.
Molecules ; 26(24)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34946711

RESUMO

Insulin resistance contributes to several disorders including type 2 diabetes and cardiovascular diseases. Carpachromene is a natural active compound that inhibits α-glucosidase enzyme. The aim of the present study is to investigate the potential activity of carpachromene on glucose consumption, metabolism and insulin signalling in a HepG2 cells insulin resistant model. A HepG2 insulin resistant cell model (HepG2/IRM) was established. Cell viability assay of HepG2/IRM cells was performed after carpachromene/metformin treatment. Glucose concentration and glycogen content were determined. Western blot analysis of insulin receptor, IRS1, IRS2, PI3k, Akt, GSK3, FoxO1 proteins after carpachromene treatment was performed. Phosphoenolpyruvate carboxykinase (PEPCK) and hexokinase (HK) enzymes activity was also estimated. Viability of HepG2/IRM cells was over 90% after carpachromene treatment at concentrations 6.3, 10, and 20 µg/mL. Treatment of HepG2/IRM cells with carpachromene decreased glucose concentration in a concentration- and time-dependant manner. In addition, carpachromene increased glycogen content of HepG2/IRM cells. Moreover, carpachromene treatment of HepG2/IRM cells significantly increased the expression of phosphorylated/total ratios of IR, IRS1, PI3K, Akt, GSK3, and FoxO1 proteins. Furthermore, PEPCK enzyme activity was significantly decreased, and HK enzyme activity was significantly increased after carpachromene treatment. The present study examined, for the first time, the potential antidiabetic activity of carpachromene on a biochemical and molecular basis. It increased the expression ratio of insulin receptor and IRS1 which further phosphorylated/activated PI3K/Akt pathway and phosphorylated/inhibited GSK3 and FoxO1 proteins. Our findings revealed that carpachromene showed central molecular regulation of glucose metabolism and insulin signalling via IR/IRS1/ PI3K/Akt/GSK3/FoxO1 pathway.


Assuntos
Benzopiranos/farmacologia , Proteína Forkhead Box O1/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Hep G2 , Humanos
12.
Anticancer Res ; 41(5): 2383-2395, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33952463

RESUMO

BACKGROUND/AIM: This study aimed to investigate the effect of the new ciprofloxacin chalcone [7-(4-(N-substituted carbamoyl methyl) piperazin-1 yl)] on the proliferation, migration, and metastasis of MCF-7 and MDA-MB-231 breast cancer cell lines. MATERIALS AND METHODS: Cell viability, colony formation and cell migration abilities were analysed. Cell cycle distribution and apoptosis were examined by flow cytometry. The molecular mechanism underlying chalcone's activity was investigated using qRT-PCR and western blotting. RESULTS: This new ciprofloxacin chalcone significantly inhibited proliferation, colony formation, and cell migration abilities of both cancer cell lines. Furthermore, it initiated apoptosis and caused cell cycle arrest at G2/M and S phase in MCF-7 and MDA-MB-231 cell lines, respectively. In addition, it up-regulated the expression of pro-apoptotic factors, p53, PUMA and NOXA, and down-regulated the expression of anti-apoptotic factors, MDM2 and MDM4. At the same time, it inhibited epithelial-mesenchymal transition by increasing the expression of E-cadherin and decreasing the expression of TGF-ß1, SNAI1, TWIST1, MMP2, and MMP9. CONCLUSION: This new ciprofloxacin chalcone exhibited promising apoptotic and anti-metastatic activities against MCF-7 and MDA-MB-231 breast cancer cell lines, and, therefore, is an attractive molecule for drug development in the treatment of breast cancer.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Chalcona/farmacologia , Ciprofloxacina/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Proteínas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Apoptose/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Caderinas/genética , Caderinas/metabolismo , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Chalcona/química , Ciprofloxacina/química , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Estrutura Molecular , Proteínas/genética , Transdução de Sinais/genética , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo
13.
Anticancer Res ; 40(5): 2739-2749, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32366419

RESUMO

BACKGROUND/AIM: Ciprofloxacin has been used as an antibiotic in the clinic for decades. Recently, ciprofloxacin and its derivatives have shown promising anti-proliferative and cytotoxic activities against several malignant cells. The aim of this study was to investigate the effect of a new derivative of ciprofloxacin on colorectal cancer (HCT116) and non-small lung carcinoma (A549) cells. MATERIALS AND METHODS: Cell viability was detected by the MTT assay. Flow cytometry was used to examine the cell cycle and apoptosis. Expression of bax, bcl2, p53 and p21 was investigated by qRT-PCR and western blotting. RESULTS: Ciprofloxacin-derivative had an anti-proliferative effect on both cell lines in a concentration-dependent manner and caused cell cycle arrest at the G2/M phase and apoptosis. p53 and Bax proteins were overexpressed, while p21 and bcl2 gene expression was decreased after treatment with the ciprofloxacin derivative. CONCLUSION: This new ciprofloxacin derivative can be potentially used for the treatment of colorectal cancer and non-small lung carcinoma.


Assuntos
Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Ciprofloxacina/farmacologia , Células A549 , Anexina A5/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Humanos , Concentração Inibidora 50 , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA