Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Saudi J Biol Sci ; 31(1): 103874, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38090134

RESUMO

Background: Magnesium is recognized to have pharmacological potential, and its nanoformulation is anticipated to offer significant therapeutic effects, particularly against cancer. In this study, we analyzed the anticancer effect of biogenically synthesized magnesium oxide nanoparticles (MgO NPs) against breast cancer cells (MDA-MB-231). Methods: Different biological evaluations, such as cytotoxicity, cellular morphology, induction of apoptosis, generation of ROS, cell adhesion and cellular migration were estimated using well established methodology. Results: The biogenic MgO NPs exhibited increased cytotoxicity, induced apoptosis, enhanced formation of ROS, promoted cell adhesion and inhibited cellular migration in a dose-dependent manner, showing its therapeutic potential against MDA-MB-231 cells. Conclusion: The current study observed strong anticancer activity of MgO NPs against studied cancer cell lines. However, our study must be validated in an appropriate animal/xenograft model to authenticate the effectiveness of MgO NPs against breast cancer.

2.
J Mol Recognit ; 36(12): e3062, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37849017

RESUMO

Glycation of biomolecules results in the formation of advanced glycation end products (AGEs). Immunoglobulin G (IgG) has been implicated in the progression of various diseases, including diabetes and cancer. This study purified three IgG subclasses (IgG1, IgG2, and IgG3) from Camelus dromedarius colostrum using ammonium sulfate fractionation and chromatographic procedures. SDS-PAGE was performed to confirm the purity and molecular weight of the IgG subclasses. Several biochemical and biophysical techniques were employed to study the effect of glycation on camel IgG using methylglyoxal (MGO), a dicarbonyl sugar. Early glycation measurement showed an increase in the fructosamine content by ~four-fold in IgG2, ~two-fold in IgG3, and a slight rise in IgG1. AGEs were observed in all classes of IgGs with maximum hyperchromicity (96.6%) in IgG2. Furthermore, glycation-induced oxidation of IgGs led to an increase in carbonyl content and loss of -SH groups. Among subclass, IgG2 showed the highest (39.7%) increase in carbonyl content accompanied by 82.5% decrease in -SH groups. Far UV-CD analysis illustrated perturbation of ß-sheet structure during glycation reaction with MGO. Moreover, glycation of IgG proceeds to various conformational states like aggregation and increased hydrophobicity. In addition, the cytotoxicity assay (MTT) illustrated the proliferation of breast cancer cells (MCF-7) with IgG2 treatment.


Assuntos
Camelus , Neoplasias , Animais , Reação de Maillard , Óxido de Magnésio , Imunoglobulina G/química , Produtos Finais de Glicação Avançada , Proliferação de Células
3.
Heliyon ; 9(4): e15270, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37123968

RESUMO

Protein misfolding can result in amyloid fiber aggregation, which is associated with various types of diseases. Therefore, preventing or treating abnormally folded proteins may provide therapeutic intervention for these diseases. Valsartan (VAL) is an angiotensin II receptor blocker (ARB) that is used to treat hypertension. In this study, we examine the anti-aggregating effect of VAL against hen egg-white lysozyme (HEWL) amyloid fibrils through spectroscopy, docking, and microscopic analysis. In vitro formation of HEWL amyloid fibrils was indicated by increased turbidity, RLS (Rayleigh light scattering), and ThT fluorescence intensity. 10 µM VAL, amyloid/aggregation was inhibited up to 83% and 72% as measured by ThT and RLS respectively. In contrast, 100 µM VAL significantly increases the fibril aggregation of HEWL. CD spectroscopy results show a stabilization of HEWL α-helical structures in the presence of 10 µM VAL while the increase in ß-sheet was detected at 100 µM concentration of VAL. The hydrophobicity of HEWL was increased at 100 µM VAL, suggesting the promotion of aggregation via its self-association. Steady-state quenching revealed that VAL and HEWL interact spontaneously via hydrogen bonds and van der Waals forces. Transmission electron microscopy (TEM) images illustrate that the needle-like fibers of HEWL amyloid were reduced at 10 µM VAL, while at 100 µM the fibrils of amyloid were increased. Additionally, our computational studies showed that VAL could bind to two binding sites within HEWL. In the BS-1 domain of HEWL, VAL binds to ASN59, ILE98, ILE58, TRP108, VAL109, SER50, ASP52, ASN59, ALA107, and TRP108 residues with a binding energy of -9.72 kcal mol-1. Also, it binds to GLU7, ALA10, ALA11, CYS6, ARG128, and ARG14 in the BS-2 domain with a binding energy of -5.89 kcal mol-1. VAL, therefore, appears to have dual effect against HEWL aggregation. We suggest that VAL stabilizes HEWL's aggregation-prone region (APR) at 10 µM, preventing aggregation. Also, we assume that at 100 µM, VAL occupies BS-2 beside BS-1 and destabilizes the folding structure of HEWL, resulting in aggregation. Further studies are needed to investigate the mechanism of action and determine its potential side effects.

4.
J Biomol Struct Dyn ; : 1-11, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37254309

RESUMO

Proto-oncogene tyrosine-protein kinase ROS (ROS1) is a member of the sevenless receptor, which affects epithelial cell differentiation and is highly expressed in a variety of tumor cells. The elevated expression and dysfunction of ROS1 have been involved in various malignancies, such as non-small cell lung cancer (NSCLC), stomach cancer, ovarian, breast cancer, cholangiocarcinoma, colorectal cancer, adenosarcoma, oesophageal cancer, etc. ROS1 has been postulated as a potential drug target in anticancer therapeutics. In this study, we carried out a virtual screening of phytochemicals against ROS1 to identify its potential inhibitors. The virtual screening process was performed on the ROS1 structure, where two phytochemicals, Helioscopinolide C and Taiwanin C, were identified. These compounds resulted from filters like Lipinski rule of five, PAINS filter, binding affinities values, and all-atom molecular dynamics (MD) simulations followed by principal component analysis (PCA) and essential dynamics. The findings of this study highlight the role of ROS1 in multiple physiological candidates and its therapeutic targeting using phytochemicals. This study suggests Helioscopinolide C and Taiwanin C as potential compounds for therapeutic development targeting ROS1-associated non-small cell lung cancer for clinical applications. Further in vitro and in vivo experiments are required to validate these findings.Communicated by Ramaswamy H. Sarma.

5.
Nanomaterials (Basel) ; 13(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37049295

RESUMO

BACKGROUND: Cancer is a chronic, heterogeneous illness that progresses through a spectrum of devastating clinical manifestations and remains the 2nd leading contributor to global mortality. Current cancer therapeutics display various drawbacks that result in inefficient management. The present study is intended to evaluate the anticancer potential of Cu-Mn bimetallic NPs (CMBNPs) synthesized from pumpkin seed extract against colon adenocarcinoma cancer cell line (HT-29). METHODS: The CMBNPs were biosynthesized by continuously stirring an aqueous solution of pumpkin seed extract with CuSO4 and manganese (II) acetate tetrahydrate until a dark green solution was obtained. The characteristic features of biogenic CMBNPs were assessed by UV-visible spectrophotometry (UV-vis), X-ray powder diffraction (XRD), energy-dispersive X-ray (EDX), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). A battery of biological assays, viz. neutral red uptake (NRU) assay, in vitro scratch assay, and comet assay, were performed for anticancer efficacy evaluation. RESULTS: The formation of spherical monodispersed bimetallic nanoparticles with an average size of 50 nm was recorded using TEM. We observed dose-dependent cytotoxicity of CMBNPs in the HT-29 cell line with an IC50 dose of 115.2 µg/mL. On the other hand, CMBNPs did not show significant cytotoxicity against normal cell lines (Vero cells). Furthermore, the treatment of CMBNPs inhibited the migration of cancer cells and caused DNA damage with a significant increase in comet tail length. CONCLUSIONS: The results showed substantial anticancer efficacy of CMBNPs against the studied cancer cell line. However, it is advocated that the current work be expanded to different in vitro cancer models so that an in vivo validation could be carried out in the most appropriate cancer model.

6.
J Mol Recognit ; 36(6): e3009, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36841950

RESUMO

Several proteins and peptides tend to form an amyloid fibril, causing a range of unrelated diseases, from neurodegenerative to certain types of cancer. In the native state, these proteins are folded and soluble. However, these proteins acquired ß-sheet amyloid fibril due to unfolding and aggregation. The conversion mechanism from well-folded soluble into amorphous or amyloid fibril is not well understood yet. Here, we induced unfolding and aggregation of hen egg-white lysozyme (HEWL) by reducing agent dithiothreitol and applied mechanical sheering force by constant shaking (1000 rpm) on the thermostat for 7 days. Our turbidity results showed that reduced HEWL rapidly formed aggregates, and a plateau was attained in nearly 5 h of incubation in both shaking and non-shaking conditions. The turbidity was lower in the shaking condition than in the non-shaking condition. The thioflavin T binding and transmission electron micrographs showed that reduced HEWL formed amorphous aggregates in both conditions. Far-UV circular dichroism results showed that reduced HEWL lost nearly all alpha-helical structure, and ß-sheet secondary structure was not formed in both conditions. All the spectroscopic and microscopic results showed that reduced HEWL formed amorphous aggregates under both conditions.


Assuntos
Amiloide , Muramidase , Animais , Temperatura , Muramidase/química , Amiloide/química , Dicroísmo Circular , Concentração de Íons de Hidrogênio , Galinhas/metabolismo
7.
Mol Biol Rep ; 49(10): 9565-9573, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35970968

RESUMO

BACKGROUND: The demand for environmentally friendly and cost-effective plant-based products for the development of cancer therapeutics has been increasing. Yohimbine (α2-adrenergic receptor antagonist) is a stimulant and aphrodisiac used to improve erectile dysfunction. In this study, we aimed to evaluate the anticancer potential of yohimbine in drug-resistant oral cancer KB-ChR-8-5 cells using different biomolecular techniques. METHODS: We estimated the anticancer efficacy of yohimbine using different assays, such as MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) cell cytotoxicity, cell morphology, cell apoptosis, reactive oxygen species (ROS) formation, and modulation in the mitochondrial membrane potential (MMP). RESULTS: Yohimbine showed a dose-dependent increase in cytotoxicity with a 50% inhibitory concentration (IC50) of 44 µM against KB-ChR-8-5 cancer cell lines. Yohimbine treatment at 40 µM and 50 µM resulted in a considerable change in cell morphology, including shrinkage, detachment, membrane blebbing, and deformed shape. Moreover, at the dose of IC50 and above, a significant induction was observed in the generation of ROS and depolarization of MMP. The possible mechanisms of action of yohimbine underlying the dose-dependent increase in cytotoxicity may be due to the induction of apoptosis, ROS generation, and modulation of MMP. CONCLUSION: Overall, yohimbine showed a significant anticancer potential against drug-resistant oral cancer KB-ChR-8-5 cells. Our study suggests that besides being an aphrodisiac, yohimbine can be used as a drug repurposing agent. However, more research is required in different in vitro and in vivo models to confirm the feasibility of yohimbine in clinics.


Assuntos
Afrodisíacos , Neoplasias Bucais , Antagonistas Adrenérgicos/farmacologia , Afrodisíacos/farmacologia , Apoptose , Linhagem Celular Tumoral , Humanos , Potencial da Membrana Mitocondrial , Neoplasias Bucais/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Ioimbina/farmacologia
8.
Biophys Chem ; 291: 106823, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35868967

RESUMO

P-Coumaric acid (p-CA) is a plant metabolite with anti-inflammatory and antioxidant effects. Due to its therapeutic potential, p-CA has attracted much attention from the scientific community lately. Oxidative stress, amyloid formation, and impaired proteasomal degradation are hallmarks of neurodegenerative diseases like Alzheimer's (AD) and are targets for developing therapeutics against such conditions. Here, we have investigated the anti-amyloidogenic properties of p-coumaric acid on hen egg white lysozyme (HEWL). Heat, pH, and agitation (55 °C, pH 2.0, 600 rpm) stress were used to induce amyloid formation in lysozyme. The aggregates characterization was done by turbidity, Rayleigh light scattering (RLS), and thioflavin-T (ThT) assays. Moreover, ANS (1-anilino naphthalene sulphate) binding assay and circular dichroism (CD) were employed to unveil protein hydrophobicity and secondary structure perturbation, respectively. Lysozyme demonstrated increased hydrophobicity and transition of α-helix to ß-sheet under aggregating conditions. Moreover, co-incubation of lysozyme with p-coumaric acid attenuates the process of amyloid in a concentration dependent manner. At 50 and 200 µM concentrations of p-coumaric acid, lysozyme retained its native-like folded structure. Cytotoxicity protection on human SK-N-SH neuroblastoma cell line was also observed using MTT assay and phase contrast microscopy. In addition, transmission electron microscopy (TEM) reaffirms the fibrillar nature of lysozyme aggregates and their attenuation by p-coumaric acid. The steady state fluorescence revealed that the mode of fluorescence quenching for the HEWL-p-coumaric acid interaction is static rather than dynamic. Moderate strength of binding in order of 104 M-1 exists between HEWL and p-coumaric acid. Thermodynamic parameters (∆H and ∆S) obtained from van't Hoff plot suggested spontaneous reaction with hydrophobic interaction. A slight micro-environmental change in HEWL around Tyr residue was observed during the binding process with the help of synchronous fluorescence. Molecular docking analysis reported the involvement of amino acid residues (TRP63, LEU75, ASP101, LYS97) to form a complex between HEWL-p-coumaric acid. The observed anti-amyloidogenic and inherent antioxidative properties of p-coumaric acid could be helpful to design a neuroprotective agent.


Assuntos
Amiloide , Muramidase , Humanos , Muramidase/química , Simulação de Acoplamento Molecular , Amiloide/química , Ácidos Cumáricos/farmacologia , Proteínas Amiloidogênicas , Antioxidantes/farmacologia , Antioxidantes/química
9.
Pharmaceutics ; 13(5)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066092

RESUMO

The continuous loss of human life due to the paucity of effective drugs against different forms of cancer demands a better/noble therapeutic approach. One possible way could be the use of nanostructures-based treatment methods. In the current piece of work, we have synthesized silver nanoparticles (AgNPs) using plant (Heliotropiumbacciferum) extract using AgNO3 as starting materials. The size, shape, and structure of synthesized AgNPs were confirmed by various spectroscopy and microscopic techniques. The average size of biosynthesized AgNPs was found to be in the range of 15 nm. The anticancer potential of these AgNPs was evaluated by a battery of tests such as MTT, scratch, and comet assays in breast (MCF-7) and colorectal (HCT-116) cancer models. The toxicity of AgNPs towards cancer cells was confirmed by the expression pattern of apoptotic (p53, Bax, caspase-3) and antiapoptotic (BCl-2) genes by RT-PCR. The cell viability assay showed an IC50 value of 5.44 and 9.54 µg/mL for AgNPs in MCF-7 and HCT-116 cell lines respectively. We also observed cell migration inhibiting potential of AgNPs in a concentration-dependent manner in MCF-7 cell lines. A tremendous rise (150-250%) in the production of ROS was observed as a result of AgNPs treatment compared with control. Moreover, the RT-PCR results indicated the difference in expression levels of pro/antiapoptotic proteins in both cancer cells. All these results indicate that cell death observed by us is mediated by ROS production, which might have altered the cellular redox status. Collectively, we report the antimetastasis potential of biogenic synthesized AgNPs against breast and colorectal cancers. The biogenic synthesis of AgNPs seems to be a promising anticancer therapy with greater efficacy against the studied cell lines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA