Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Biomed Pharmacother ; 174: 116449, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518607

RESUMO

Traumatic nerve injuries are nowadays a significant clinical challenge and new substitutes with adequate biological and mechanical properties are in need. In this context, fibrin-agarose hydrogels (FA) have shown the possibility to generate tubular scaffolds with promising results for nerve repair. However, to be clinically viable, these scaffolds need to possess enhanced mechanical properties. In this line, genipin (GP) crosslinking has demonstrated to improve biomechanical properties with good biological properties compared to other crosslinkers. In this study, we evaluated the impact of different GP concentrations (0.05, 0.1 and 0.2% (m/v)) and reaction times (6, 12, 24, 72 h) on bioartificial nerve substitutes (BNS) consisting of nanostructured FA scaffolds. First, crosslinked BNS were studied histologically, ultrastructurally and biomechanically and then, its biocompatibility and immunomodulatory effects were ex vivo assessed with a macrophage cell line. Results showed that GP was able to improve the biomechanical resistance of BNS, which were dependent on both the GP treatment time and concentration without altering the structure. Moreover, biocompatibility analyses on macrophages confirmed high cell viability and a minimal reduction of their metabolic activity by WST-1. In addition, GP-crosslinked BNS effectively directed macrophage polarization from a pro-inflammatory (M1) towards a pro-regenerative (M2) phenotype, which was in line with the cytokines release profile. In conclusion, this study considers time and dose-dependent effects of GP in FA substitutes which exhibited increased biomechanical properties while reducing immunogenicity and promoting pro-regenerative macrophage shift. These tubular substitutes could be useful for nerve application or even other tissue engineering applications such as urethra.


Assuntos
Reagentes de Ligações Cruzadas , Iridoides , Macrófagos , Alicerces Teciduais , Iridoides/farmacologia , Animais , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Alicerces Teciduais/química , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/farmacologia , Camundongos , Hidrogéis/química , Hidrogéis/farmacologia , Fenômenos Biomecânicos , Sobrevivência Celular/efeitos dos fármacos , Fibrina/metabolismo , Sefarose/química , Sefarose/farmacologia , Engenharia Tecidual/métodos , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Células RAW 264.7
2.
Dent Mater ; 40(1): 66-79, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37914549

RESUMO

OBJECTIVE: The aim of this study was to determine the effect of titanium micro particles (TiP) previously functionalized with nanoparticles doped with dexamethasone (Dex) and doxycycline (Dox), on macrophage polarization and activity. METHODS: Macrophages RAW264.7 were cultured in the presence TiP loaded with dexamethasone -NPs (Dex)- and doxycycline -NPs (Dox)-, and as control, TiP with or without doped NPs. Cells were tested with and without previous bacterial lipopolysaccharide endotoxin (LPS) stimulation. Their morphology, proliferation, cytotoxicity, phenotypic change, and cytokines release were assessed by LIVE/DEAD, DNA release, metabolic activity, brightfield and scanning electron microscopy. The test Kruskall-Wallis was used for comparisons, while the cytokine expression profiles were examined by hierarchical clustering (p < 0.05). RESULTS: Upon exposure with TiP macrophages were activated and polarized to M1, but without depicting cytotoxic effects. The particles were phagocytised, and vacuolized. When exposed to functionalised TiP with NPs(Dex) and NPs(Dox), the ratio M1/M2 was up to forty times lower compared to TiP alone. When exposed to LPS, TiP reduced cell viability in half. Functionalised TiP with NPs(Dex) inhibited the cytokine release exerted by TiP on macrophages. When macrophages were exposed to functionalised TiPs with NPs(Dex) with and without LPS, the effect of TiP on cytokine secretion was inhibited. SIGNIFICANCE: Functionalised TiPs with NPs(Dex) and NPs(Dox) may potentially have beneficial effects on modulating titanium and LPS-related inflammatory reactions.


Assuntos
Nanopartículas , Nanosferas , Titânio , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Doxiciclina , Citocinas , Macrófagos/metabolismo , Dexametasona/farmacologia
3.
Biomed Pharmacother ; 164: 115000, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37301136

RESUMO

Skin damage due to severe burns can compromise patient life. Current tissue engineering methods allow the generation of human skin substitutes for clinical use. However, this process is time-consuming, as the keratinocytes required to generate artificial skin have a low proliferation rate in culture. In this study, we evaluated the pro-proliferative effects of three natural biomolecules isolated from olive oil: phenolic extract (PE), DL-3,4-dihydroxyphenyl glycol (DHFG), and oleuropein (OLP), on cultured human skin keratinocytes. The results showed that PE and OLP increased the proliferation of immortalized human skin keratinocytes, especially at concentrations of 10 and 5 µg/mL, respectively, without altering cell viability. In contrast, DHFG did not produce a significant improvement in keratinocyte proliferation. In normal human skin keratinocytes obtained from skin biopsies, we found that PE, but not OLP, could increase the number of keratinocyte colonies and the area occupied by these cells. Furthermore, this effect was associated with increased KI-67 and Proliferating cell nuclear antigen (PCNA) gene expression. Thus, we propose that PE positively affects keratinocyte proliferation and could be used in culture protocols to improve bioartificial skin generation by tissue engineering.


Assuntos
Queratinócitos , Pele , Humanos , Azeite de Oliva/farmacologia , Células Cultivadas , Queratinócitos/metabolismo , Engenharia Tecidual
4.
Biomed Pharmacother ; 162: 114612, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36989713

RESUMO

OBJECTIVES: Corneal diseases are among the main causes of blindness, with approximately 4.6 and 23 million patients worldwide suffering from bilateral and unilateral corneal blindness, respectively. The standard treatment for severe corneal diseases is corneal transplantation. However, relevant disadvantages, particularly in high-risk conditions, have focused the attention on the search for alternatives. METHODS: We report interim findings of a phase I-II clinical study evaluating the safety and preliminary efficacy of a tissue-engineered corneal substitute composed of a nanostructured fibrin-agarose biocompatible scaffold combined with allogeneic corneal epithelial and stromal cells (NANOULCOR). 5 subjects (5 eyes) suffering from trophic corneal ulcers refractory to conventional treatments, who combined stromal degradation or fibrosis and limbal stem cell deficiency, were included and treated with this allogeneic anterior corneal substitute. RESULTS: The implant completely covered the corneal surface, and ocular surface inflammation decreased following surgery. Only four adverse reactions were registered, and none of them were severe. No detachment, ulcer relapse nor surgical re-interventions were registered after 2 years of follow-up. No signs of graft rejection, local infection or corneal neovascularization were observed either. Efficacy was measured as a significant postoperative improvement in terms of the eye complication grading scales. Anterior segment optical coherence tomography images revealed a more homogeneous and stable ocular surface, with complete scaffold degradation occurring within 3-12 weeks after surgery. CONCLUSIONS: Our findings suggest that the surgical application of this allogeneic anterior human corneal substitute is feasible and safe, showing partial efficacy in the restoration of the corneal surface.


Assuntos
Doenças da Córnea , Transplante de Células-Tronco Hematopoéticas , Ceratite , Humanos , Córnea , Transplante de Células-Tronco , Cegueira
5.
Cells ; 12(4)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36831296

RESUMO

Wharton's jelly stem cells (WJSC) from the human umbilical cord (UC) are one of the most promising mesenchymal stem cells (MSC) in tissue engineering (TE) and advanced therapies. The cell niche is a key element for both, MSC and fully differentiated tissues, to preserve their unique features. The basement membrane (BM) is an essential structure during embryonic development and in adult tissues. Epithelial BMs are well-known, but similar structures are present in other histological structures, such as in peripheral nerve fibers, myocytes or chondrocytes. Previous studies suggest the expression of some BM molecules within the Wharton's Jelly (WJ) of UC, but the distribution pattern and full expression profile of these molecules have not been yet elucidated. In this sense, the aim of this histological study was to evaluate the expression of main BM molecules within the WJ, cultured WJSC and during WJSC microtissue (WJSC-MT) formation process. Results confirmed the presence of a pericellular matrix composed by the main BM molecules-collagens (IV, VII), HSPG2, agrin, laminin and nidogen-around the WJSC within UC. Additionally, ex vivo studies demonstrated the synthesis of these BM molecules, except agrin, especially during WJSC-MT formation process. The WJSC capability to synthesize main BM molecules could offer new alternatives for the generation of biomimetic-engineered substitutes where these molecules are particularly needed.


Assuntos
Células-Tronco Mesenquimais , Geleia de Wharton , Adulto , Feminino , Gravidez , Humanos , Agrina/metabolismo , Cordão Umbilical , Células-Tronco Mesenquimais/metabolismo , Técnicas de Cultura de Células , Membrana Basal
6.
Histol Histopathol ; 38(2): 127-138, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35762521

RESUMO

The histological structure of human epithelial tissue is complex, but all epithelia share three major features: cohesion, polarity and attachment. These functions are mainly achieved by the presence of specialized structures such as intercellular junctions, polarity protein complexes and basement membranes. In the present review, we have analyzed the presence of each of these structures in several groups of animals that are considered to be at the base of the animal evolution tree. Interestingly, these characters seem to have evolved independently, and a careful histological and structural analysis of the phylogenetic tree shows different groups of animals in which epithelia are absent and groups in which cells show only some of the specialized structures found in differentiated epithelia. These findings could contribute to understand how epithelial tissues evolved and determine their current protective functions.


Assuntos
Células Epiteliais , Junções Intercelulares , Animais , Humanos , Filogenia , Epitélio/metabolismo , Células Epiteliais/metabolismo , Polaridade Celular
7.
Biomedicines ; 9(11)2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34829863

RESUMO

Human skin keratinocyte primary cultures can be established from skin biopsies with culture media containing epithelial growth factor (EGF). Although current methods are efficient, optimization is required to accelerate the procedure and obtain these cultures in less time. In the present study, we evaluated the effect of novel formulations based on EGF-loaded nanostructured lipid carriers (NLC). First, biosafety of NLC containing recombinant human EGF (NLC-rhEGF) was verified in immortalized skin keratinocytes and cornea epithelial cells, and in two epithelial cancer cell lines, by quantifying free DNA released to the culture medium. Then we established primary cell cultures of human skin keratinocytes with basal culture media (BM) and BM supplemented with NLC-rhEGF, liquid EGF (L-rhEGF), or NLC alone (NLC-blank). The results showed that cells isolated by enzymatic digestion and cultured with or without a feeder layer had a similar growth rate regardless of the medium used. However, the explant technique showed higher efficiency when NLC-rhEGF culture medium was used, compared to BM, L-rhEGF, or NLC-blank. Gene expression analysis showed that NLC-rhEGF was able to increase EGFR gene expression, along with that of other genes related to cytokeratins, cell-cell junctions, and keratinocyte maturation and differentiation. In summary, these results support the use of NLC-rhEGF to improve the efficiency of explant-based methods in the efficient generation of human keratinocyte primary cell cultures for tissue engineering use.

8.
ACS Appl Mater Interfaces ; 13(42): 49692-49704, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34645258

RESUMO

The inclusion of magnetic nanoparticles (MNP) in a hydrogel matrix to produce magnetic hydrogels has broadened the scope of these materials in biomedical research. Embedded MNP offer the possibility to modulate the physical properties of the hydrogel remotely and on demand by applying an external magnetic field. Moreover, they enable permanent changes in the mechanical properties of the hydrogel, as well as alterations in the micro- and macroporosity of its three-dimensional (3D) structure, with the associated potential to induce anisotropy. In this work, the behavior of biocompatible and biodegradable hydrogels made with Fmoc-diphenylalanine (Fmoc-FF) (Fmoc = fluorenylmethoxycarbonyl) and Fmoc-arginine-glycine-aspartic acid (Fmoc-RGD) short peptides to which MNP were incorporated was studied in detail with physicochemical, mechanical, and biological methods. The resulting hybrid hydrogels showed enhance mechanical properties and withstood injection without phase disruption. In mice, the hydrogels showed faster and improved self-healing properties compared to their nonmagnetic counterparts. Thanks to these superior physical properties and stability during culture, they can be used as 3D scaffolds for cell growth. Additionally, magnetic short-peptide hydrogels showed good biocompatibility and the absence of toxicity, which together with their enhanced mechanical stability and excellent injectability make them ideal biomaterials for in vivo biomedical applications with minimally invasive surgery. This study presents a new approach to improving the physical and mechanical properties of supramolecular hydrogels by incorporating MNP, which confer structural reinforcement and stability, remote actuation by magnetic fields, and better injectability. Our approach is a potential catalyst for expanding the biomedical applications of supramolecular short-peptide hydrogels.


Assuntos
Materiais Biocompatíveis/farmacologia , Hidrogéis/farmacologia , Nanopartículas de Magnetita/química , Peptídeos/farmacologia , Animais , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/química , Proliferação de Células/efeitos dos fármacos , Hidrogéis/administração & dosagem , Hidrogéis/química , Injeções Subcutâneas , Substâncias Macromoleculares/administração & dosagem , Substâncias Macromoleculares/química , Substâncias Macromoleculares/farmacologia , Teste de Materiais , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Osteoblastos/efeitos dos fármacos , Peptídeos/administração & dosagem , Peptídeos/química
9.
J Periodontal Res ; 56(6): 1116-1131, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34510438

RESUMO

OBJECTIVE: The aim of this study was to generate novel models of bioartificial human oral mucosa with increased vascularization potential for future use as an advanced therapies medicinal product, by using different vascular and mesenchymal stem cell sources. BACKGROUND: Oral mucosa substitutes could contribute to the clinical treatment of complex diseases affecting the oral cavity. Although several models of artificial oral mucosa have been described, biointegration is a major issue that could be favored by the generation of novel substitutes with increased vascularization potential once grafted in vivo. METHODS: Three types of mesenchymal stem cells (MSCs) were obtained from adipose tissue, bone marrow, and dental pulp, and their in vitro potential was evaluated by inducing differentiation to the endothelial lineage using conditioning media. Then, 3D models of human artificial oral mucosa were generated using biocompatible fibrin-agarose biomaterials combined with human oral mucosa fibroblasts and each type of MSC before and after induction to the endothelial lineage, using human umbilical vein endothelial cells (HUVEC) as controls. The vascularization potential of each oral mucosa substitute was assessed in vitro and in vivo in nude mice. RESULTS: In vitro induction of MSCs kept in culture was able to increase the expression of VEGF, CD31, and vWF endothelial markers, especially in bone marrow and dental pulp-MSCs, and numerous proteins with a role in vasculogenesis become overexpressed. Then, in vivo grafting resulted in a significant increase in blood vessels formation at the interface area between the graft and the host tissues, with significantly positive expression of VEGF, CD31, vWF, and CD34 as compared to negative controls, especially when pre-differentiated MSCs derived from bone marrow and dental pulp were used. In addition, a significantly higher number of cells committed to the endothelial lineage expressing the same endothelial markers were found within the bioartificial tissue. CONCLUSION: Our results suggest that the use of pre-differentiated MSCs could contribute to a rapid generation of a vascular network that may favor in vivo biointegration of bioengineered human oral mucosa substitutes.


Assuntos
Células-Tronco Mesenquimais , Engenharia Tecidual , Animais , Diferenciação Celular , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Nus , Mucosa Bucal/cirurgia , Neovascularização Fisiológica
10.
Tissue Eng Part B Rev ; 26(4): 301-312, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32085697

RESUMO

Human Wharton's jelly stem cells (HWJSC) can be efficiently isolated from the umbilical cord, and numerous reports have demonstrated that these cells can differentiate into several cell lineages. This fact, coupled with the high proliferation potential of HWJSC, makes them a promising source of stem cells for use in tissue engineering and regenerative medicine. However, their real potentiality has not been established to date. In the present study, we carried out a systematic review to determine the multilineage differentiation potential of HWJSC. After a systematic literature search, we selected 32 publications focused on the differentiation potential of these cells. Analysis of these studies showed that HWJSC display expanded differentiation potential toward some cell types corresponding to all three embryonic cell layers (ectodermal, mesodermal, and endodermal), which is consistent with their constitutive expression of key pluripotency markers such as OCT4, SOX2, and NANOG, and the embryonic marker SSEA4. We conclude that HWJSC can be considered cells in an intermediate state between multipotentiality and pluripotentiality, since their proliferation capability is not unlimited and differentiation to all cell types has not been demonstrated thus far. These findings support the clinical use of HWJSC for the treatment of diseases affecting not only mesoderm-type tissues but also other cell lineages. Impact statement Human Wharton's jelly stem cells (HWJSC) are mesenchymal stem cells that are easy to isolate and handle, and that readily proliferate. Their wide range of differentiation capabilities supports the view that these cells can be considered pluripotent. Accordingly, HWJSC are one of the most promising cell sources for clinical applications in advanced therapies.


Assuntos
Diferenciação Celular , Linhagem da Célula , Células-Tronco Mesenquimais/citologia , Células-Tronco Pluripotentes/citologia , Medicina Regenerativa , Células-Tronco/citologia , Humanos
11.
Eur Heart J Cardiovasc Imaging ; 21(4): 378-386, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31702781

RESUMO

AIMS: Arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) is a life-threatening entity with a highly heterogeneous genetic background. Cardiac magnetic resonance (CMR) imaging can identify fibrofatty scar by late gadolinium enhancement (LGE). Our aim is to investigate genotype-phenotype correlation in ARVC/D mutation carriers, focusing on CMR-LGE and myocardial fibrosis patterns. METHODS AND RESULTS: A cohort of 44 genotyped patients, 33 with definite and 11 with borderline ARVC/D diagnosis, was characterized using CMR and divided into groups according to their genetic condition (desmosomal, non-desmosomal mutation, or negative). We collected information on cardiac volumes and function, as well as LGE pattern and extension. In addition, available ventricular myocardium samples from patients with pathogenic gene mutations were histopathologically analysed. Half of the patients were women, with a mean age of 41.6 ± 17.5 years. Next-generation sequencing identified a potential pathogenic mutation in 71.4% of the probands. The phenotype varied according to genetic status, with non-desmosomal male patients showing lower left ventricular (LV) systolic function. LV fibrosis was similar between groups, but distribution in non-desmosomal patients was frequently located at the posterolateral LV wall; a characteristic LV subepicardial circumferential LGE pattern was significantly associated with ARVC/D caused by desmin mutation. Histological analysis showed increased fibrillar connective tissue and intercellular space in all the samples. CONCLUSION: Desmosomal and non-desmosomal mutation carriers showed different morphofunctional features but similar LV LGE presence. DES mutation carriers can be identified by a specific and extensive LV subepicardial circumferential LGE pattern. Further studies should investigate the specificity of LGE in ARVC/D.


Assuntos
Displasia Arritmogênica Ventricular Direita , Cardiomiopatias , Adulto , Displasia Arritmogênica Ventricular Direita/diagnóstico por imagem , Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/patologia , Cardiomiopatias/diagnóstico por imagem , Cardiomiopatias/genética , Cardiomiopatias/patologia , Meios de Contraste , Feminino , Fibrose , Gadolínio , Estudos de Associação Genética , Humanos , Imagem Cinética por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Mutação , Miocárdio/patologia , Adulto Jovem
12.
Exp Eye Res ; 186: 107717, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31265829

RESUMO

Scleral defects can result as a consequence of trauma, infectious diseases or cancer and surgical repair with allogeneic scleral grafts can be required. However, this method has limitations and novel alternatives are needed. Here, the efficacy of acellular nanostructured fibrin-agarose hydrogel-based substitutes (NFAH) in the repair of scleral defects in rabbits was studied. For this, scleral defects of 5-mm diameter were made on 18 adult-male New Zealand rabbits and repaired with acellular NFAH, NFAH crosslinked with genipin (NFAH-GP) or glutaraldehyde (NFAH-GA), allogeneic scleral grafts as control (C-CTR) or not repaired (negative control N-CTR) (n = 3 each). Macroscopic and histological analyses were performed after 40-days. Macroscopy confirmed the repair of all defects in a comparable manner than the C-CTR. Histology showed no degradation nor integration in C-CTR while NFAH-GP and NFAH-GA biomaterials were encapsulated by connective and inflammatory tissues with partial biodegradation. The NFAH were fully biodegraded and replaced by a loose connective tissue and sclera covering the defects. This in vivo study demonstrated that the NFAH are a promising biocompatible and pro-regenerative alternative to the use of allogeneic cadaveric grafts. However, large defects and long-term studies are needed to demonstrate the potential clinical usefulness of these substitutes.


Assuntos
Traumatismos Oculares/cirurgia , Adesivo Tecidual de Fibrina/administração & dosagem , Nanoestruturas/uso terapêutico , Esclera/cirurgia , Sefarose/administração & dosagem , Animais , Materiais Biocompatíveis/uso terapêutico , Masculino , Coelhos , Esclera/lesões
13.
J Tissue Eng Regen Med ; 13(4): 664-673, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30793853

RESUMO

Blood loss remains a major concern during surgery and can increase the morbidity of the intervention. The use of topical haemostatic agents to overcome this issue therefore becomes necessary. Fibrin sealants are promising haemostatic agents due to their capacity to promote coagulation, but their effectiveness and applicability need to be improved. We have compared the haemostatic efficacy of a novel nanostructured fibrin-agarose hydrogel patch, with (c-NFAH) or without cells (a-NFAH), against two commercially available haemostatic agents in a rat model of hepatic resection. Hepatic resections were performed by making short or long incisions (mild or severe model, respectively), and haemostatic agents were applied to evaluate time to haemostasis, presence of haematoma, post-operative adhesions to adjacent tissues, and inflammation factors. We found a significantly higher haemostatic success rate (time to haemostasis) with a-NFAH than with other commercial haemostatic agents. Furthermore, other relevant outcomes investigated were also improved in the a-NFAH group, including no presence of haematoma, lower adhesions, and lower grades of haemorrhage, inflammation, and necrosis in histological analysis. Overall, these findings identify a-NFAH as a promising haemostatic agent in liver resection and likely in a range of surgical procedures.


Assuntos
Fibrina/farmacologia , Hemostáticos/farmacologia , Hidrogéis/farmacologia , Nanoestruturas/química , Sefarose/farmacologia , Animais , Hemorragia/patologia , Inflamação/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Necrose , Ratos Wistar
14.
Circulation ; 137(15): 1595-1610, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29212896

RESUMO

BACKGROUND: Desmin (DES) mutations cause severe skeletal and cardiac muscle disease with heterogeneous phenotypes. Recently, DES mutations were described in patients with inherited arrhythmogenic right ventricular cardiomyopathy/dysplasia, although their cellular and molecular pathomechanisms are not precisely known. Our aim is to describe clinically and functionally the novel DES-p.Glu401Asp mutation as a cause of inherited left ventricular arrhythmogenic cardiomyopathy/dysplasia. METHODS: We identified the novel DES mutation p.Glu401Asp in a large Spanish family with inherited left ventricular arrhythmogenic cardiomyopathy/dysplasia and a high incidence of adverse cardiac events. A full clinical evaluation was performed on all mutation carriers and noncarriers to establish clinical and genetic cosegregation. In addition, desmin, and intercalar disc-related proteins expression were histologically analyzed in explanted cardiac tissue affected by the DES mutation. Furthermore, mesenchymal stem cells were isolated and cultured from 2 family members with the DES mutation (1 with mild and 1 with severe symptomatology) and a member without the mutation (control) and differentiated ex vivo to cardiomyocytes. Then, important genes related to cardiac differentiation and function were analyzed by real-time quantitative polymerase chain reaction. Finally, the p.Glu401Asp mutated DES gene was transfected into cell lines and analyzed by confocal microscopy. RESULTS: Of the 66 family members screened for the DES-p.Glu401Asp mutation, 23 of them were positive, 6 were obligate carriers, and 2 were likely carriers. One hundred percent of genotype-positive patients presented data consistent with inherited arrhythmogenic cardiomyopathy/dysplasia phenotype with variable disease severity expression, high-incidence of sudden cardiac death, and absence of skeletal myopathy or conduction system disorders. Immunohistochemistry was compatible with inherited arrhythmogenic cardiomyopathy/dysplasia, and the functional study showed an abnormal growth pattern and cellular adhesion, reduced desmin RNA expression, and some other membrane proteins, as well, and desmin aggregates in transfected cells expressing the mutant desmin. CONCLUSIONS: The DES-p.Glu401Asp mutation causes predominant inherited left ventricular arrhythmogenic cardiomyopathy/dysplasia with a high incidence of adverse clinical events in the absence of skeletal myopathy or conduction system disorders. The pathogenic mechanism probably corresponds to an alteration in desmin dimer and oligomer assembly and its connection with membrane proteins within the intercalated disc.


Assuntos
Arritmias Cardíacas/genética , Cardiomiopatias/genética , Desmina/genética , Cardiopatias Congênitas/genética , Ventrículos do Coração/anormalidades , Mutação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/fisiopatologia , Cardiomiopatias/diagnóstico , Cardiomiopatias/fisiopatologia , Diferenciação Celular/genética , Células Cultivadas , Criança , Desmina/metabolismo , Eletrocardiografia , Feminino , Predisposição Genética para Doença , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/fisiopatologia , Ventrículos do Coração/metabolismo , Ventrículos do Coração/fisiopatologia , Hereditariedade , Heterozigoto , Humanos , Imageamento por Ressonância Magnética , Masculino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Pessoa de Meia-Idade , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Linhagem , Fenótipo , Espanha , Adulto Jovem
15.
BMJ Open ; 7(9): e016487, 2017 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-28947445

RESUMO

INTRODUCTION: There is a need to find alternatives to the use of human donor corneas in transplants because of the limited availability of donor organs, the incidence of graft complications, as well as the inability to successfully perform corneal transplant in patients presenting limbal deficiency, neo-vascularized or thin corneas, etc. We have designed a clinical trial to test a nanostructured fibrin-agarose corneal substitute combining allogeneic cells that mimics the anterior human native cornea in terms of optical, mechanical and biological behaviour. METHODS AND ANALYSIS: This is a phase I-II, randomised, controlled, open-label clinical trial, currently ongoing in ten Spanish hospitals, to evaluate the safety and feasibility, as well as clinical efficacy evidence, of this bioengineered human corneal substitute in adults with severe trophic corneal ulcers refractory to conventional treatment, or with sequelae of previous ulcers. In the initial phase of the trial (n=5), patients were sequentially recruited, with a safety period of 45 days, receiving the bioengineered corneal graft. In the second phase of the trial (currently ongoing), subjects are block randomised (2:1) to receive either the corneal graft (n=10), or amniotic membrane (n=5), as the control treatment. Adverse events, implant status, infection signs and induced neovascularization are evaluated as determinants of safety and feasibility of the bioengineered graft (main outcomes). Study endpoints are measured along a follow-up period of 24 months, including 27 post-implant assessment visits according to a decreasing frequency. Intention to treat, and per protocol, and safety analysis will be performed. ETHICS AND DISSEMINATION: The trial protocol received written approval by the corresponding Ethics Committee and the Spanish Regulatory Authority and is currently recruiting subjects. On completion of the trial, manuscripts with the results of phases I and II of the study will be published in a peer-reviewed journal. TRIAL REGISTRATION: CT.gov identifier: NCT01765244 (Jan2013). EudraCT number: 2010-024290-40 (Dec2012).


Assuntos
Doenças da Córnea/cirurgia , Ceratócitos da Córnea/transplante , Transplante de Córnea/métodos , Epitélio Corneano/transplante , Engenharia Tecidual/métodos , Adulto , Estudos de Casos e Controles , Doenças da Córnea/patologia , Ceratócitos da Córnea/citologia , Transplante de Córnea/efeitos adversos , Epitélio Corneano/citologia , Feminino , Humanos , Masculino , Projetos Piloto , Resultado do Tratamento
16.
Biotechnol J ; 12(12)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28869335

RESUMO

Repair of abdominal wall defects is one of the major clinical challenges in abdominal surgery. Most biomaterials are associated to infection and severe complications, making necessary safer and more biocompatible approaches. In the present work, the adequate mechanical properties of synthetic polymer meshes with tissue-engineered matrices containing stromal mesenchymal cells is combined to generate a novel cell-containing tissue-like artificial stroma (SCTLAS) for use in abdominal wall repair. SCTLAS consisting on fibrin-agarose hydrogels seeded with stromal cells and reinforced with commercial surgical meshes (SM) are evaluated in vitro and in vivo in animal models of abdominal wall defect. Inflammatory cells, collagen, and extracellular matrix (ECM) components are analyzed and compared with grafted SM. Use of SCTLAS results in less inflammation and less fibrosis than SM, with most ECM components being very similar to control abdominal wall tissues. Cell migration and ECM remodeling within SCTLAS is comparable to control tissues. The use of SCTLAS could contribute to reduce the side-effects associated to currently available SM and regenerated tissues are more similar to control abdominal wall tissues. Bioengineered SCTLAS could contribute to a safer treatment of abdominal wall defects with higher biocompatibility than currently available SM.


Assuntos
Parede Abdominal/cirurgia , Materiais Biocompatíveis/uso terapêutico , Transplante de Células-Tronco Mesenquimais/métodos , Engenharia Tecidual/métodos , Parede Abdominal/patologia , Animais , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Histocitoquímica , Ratos , Ratos Wistar
17.
J Tissue Eng Regen Med ; 11(5): 1412-1426, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-26177604

RESUMO

Neural tissue engineering is focused on the design of novel biocompatible substitutes to repair peripheral nerve injuries. In this paper we describe a nanostructured fibrin-agarose bioartificial nerve substitute (NFABNS), based on nanostructured fibrin-agarose hydrogels (FAHs) with human adipose-derived mesenchymal stem cells (HADMSCs). These NFABNSs were mechanically characterized and HADMSCs behaviour was evaluated using histological and ultrastructural techniques. Mechanical characterization showed that the NFABNSs were resistant, flexible and elastic, with a high deformation capability. Histological analyses carried out in vitro during 16 days revealed that the number of HADMSCs decreased over time, with a significant increase after 16 days. HADMSCs formed cell clusters and degraded the surrounding scaffold during this time; additionally, HADMSCs showed active cell proliferation and cytoskeletal remodelling, with a progressive synthesis of extracellular matrix molecules. Finally, this study demonstrated that it is possible to generate biologically active and mechanically stable tissue-like substitutes with specific dimensions, based on the use of HADMSCs, FAHs and a nanostructure technique. However, in vivo analyses are needed to demonstrate their potential usefulness in peripheral nerve repair. Copyright © 2015 John Wiley & Sons, Ltd.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Nanoestruturas , Nervos Periféricos , Sefarose/química , Alicerces Teciduais/química , Humanos , Traumatismos dos Nervos Periféricos/terapia
18.
J Tissue Eng Regen Med ; 11(2): 553-563, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-25080900

RESUMO

Nerve conduits are promising alternatives for repairing nerve gaps; they provide a close microenvironment that supports nerve regeneration. In this sense, histological analysis of axonal growth is a determinant to achieve successful nerve regeneration. To evaluate this process, the most-used immunohistochemical markers are neurofilament (NF), ß-III tubulin and, infrequently, GAP-43. However, GAP-43 expression in long-term nerve regeneration models is still poorly understood. In this study we analysed GAP-43 expression and its correlation with NF and S-100, using three tissue-engineering approaches with different regeneration profiles. A 10 mm gap was created in the sciatic nerve of 12 rats and repaired using collagen conduits or collagen conduits filled with fibrin-agarose hydrogels or with hydrogels containing autologous adipose-derived mesenchymal stem cells (ADMSCs). After 12 weeks the conduits were harvested for histological analysis. Our results confirm the long-term expression of GAP-43 in all groups. The expression of GAP-43 and NF was significantly higher in the group with ADMSCs. Interestingly, GAP-43 was observed in immature, newly formed axons and NF in thicker and mature axons. These proteins were not co-expressed, demonstrating their differential expression in newly formed nerve fascicles. Our descriptive and quantitative histological analysis of GAP-43 and NFL allowed us to determine, with high accuracy, the heterogenic population of axons at different stages of maturation in three tissue-engineering approaches. Finally, to perform a complete assessment of axonal regeneration, the quantitative immunohistochemical evaluation of both GAP-43 and NF could be a useful quality control in tissue engineering. Copyright © 2014 John Wiley & Sons, Ltd.


Assuntos
Proteína GAP-43/metabolismo , Filamentos Intermediários/metabolismo , Regeneração Nervosa/fisiologia , Animais , Axônios/metabolismo , Materiais Biocompatíveis/metabolismo , Colágeno/metabolismo , Fibrina/química , Hidrogéis/química , Masculino , Células-Tronco Mesenquimais/citologia , Ratos , Ratos Wistar , Células de Schwann/citologia , Nervo Isquiático/patologia , Sefarose/química , Engenharia Tecidual/métodos
19.
Biomed Mater ; 11(1): 015015, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26894556

RESUMO

The use of mucoperiostial flaps during cleft palate surgery is associated with altered palatal bone growth and development. We analyzed the potential usefulness of a bioengineered oral mucosa in an in vivo model of cleft palate. First, a 4 mm palate defect was created in one side of the palate oral mucosa of 3 week-old New Zealand rabbits, and a complete autologous bioengineered oral mucosa (BOM) or acellular fibrin-agarose scaffold (AS) was implanted. No material was implanted in the negative controls (NC), and positive controls were not subjected to palatal defect (PC). Animals were allowed to grow for 6 months and the results were analyzed morphologically (palate mucosa and bone size) and histologically. Results show that palatal mucosa and bone growth and development were significantly altered in NC and AS animals, whereas BOM animals had similar results to PC and the bioengineered oral mucosa was properly integrated in the host palate. The amount and compaction of collagen fibers was similar between BOM and PC, and both groups of animals had comparable contents of proteoglycans and glycoproteins at the palate bone. No differences were found for decorin, osteocalcin and BMP2. The use of bioengineered oral mucosa substitutes is able to improve palate growth and maturation by preventing the alterations found in animals with denuded palate bone. These results support the potential clinical usefulness of BOM substitutes for the treatment of patients with cleft palate and other conditions in which palate mucosa grafts are necessary with consequent bone denudation.


Assuntos
Materiais Biomiméticos/uso terapêutico , Fissura Palatina/terapia , Fibrina/uso terapêutico , Mucosa Bucal/química , Sefarose/uso terapêutico , Alicerces Teciduais , Animais , Órgãos Bioartificiais , Fissura Palatina/patologia , Teste de Materiais , Mucosa Bucal/transplante , Palato Duro/patologia , Coelhos , Resultado do Tratamento
20.
Int J Urol ; 23(1): 85-92, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26502190

RESUMO

OBJECTIVE: To generate and to evaluate ex vivo a novel model of bioengineered human bladder mucosa based on fibrin-agarose biomaterials. METHODS: We first established primary cultures of stromal and epithelial cells from small biopsies of the human bladder using enzymatic digestion and selective cell culture media. Then, a bioengineered substitute of the bladder lamina propria was generated using cultured stromal cells and fibrin-agarose scaffolds, and the epithelial cells were then subcultured on top to generate a complete bladder mucosa substitute. Evaluation of this substitute was carried out by cell viability and histological analyses, immunohistochemistry for key epithelial markers and transmission electron microscopy. RESULTS: The results show a well-configured stroma substitute with a single-layer epithelium on top. This substitute was equivalent to the control bladder mucosa. After 7 days of ex vivo development, the epithelial layer expressed pancytokeratin, and cytokeratins CK7, CK8 and CK13, as well as filaggrin and ZO-2, with negative expression of CK4 and uroplakin III. A reduction of the expression of CK8, filaggrin and ZO-2 was found at day 14 of development. An immature basement membrane was detected at the transition between the epithelium and the lamina propria, with the presence of epithelial hemidesmosomes, interdigitations and immature desmosomes. CONCLUSIONS: The present results suggest that this model of bioengineered human bladder mucosa shared structural and functional similarities with the native bladder mucosa, although the epithelial cells were not fully differentiated ex vivo. We hypothesize that this bladder mucosa substitute could have potential clinical usefulness after in vivo implantation.


Assuntos
Mucosa/citologia , Engenharia Tecidual/métodos , Bexiga Urinária/citologia , Adulto , Idoso , Membrana Basal/ultraestrutura , Materiais Biocompatíveis , Sobrevivência Celular , Células Epiteliais , Fibrina , Proteínas Filagrinas , Humanos , Proteínas de Filamentos Intermediários/análise , Queratina-13/análise , Queratina-4/análise , Queratina-7/análise , Queratina-8/análise , Masculino , Pessoa de Meia-Idade , Mucosa/química , Mucosa/ultraestrutura , Cultura Primária de Células , Sefarose , Células Estromais , Alicerces Teciduais , Uroplaquina III/análise , Proteína da Zônula de Oclusão-2/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA