Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Front Biosci (Landmark Ed) ; 29(7): 246, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39082330

RESUMO

BACKGROUND: Pneumocystis jirovecii is the most emerging life-threating health problem that causes acute and fatal pneumonia infection. It is rare and more contagious for patients with leukemia and immune-deficiency disorders. Until now there is no treatment available for this infection therefore, it is needed to develop any treatment against this pathogen. METHODS: In this work, we used comparative proteomics, robust immune-informatics, and reverse vaccinology to create an mRNA vaccine against Pneumocystis jirovecii by targeting outer and transmembrane proteins. Using a comparative subtractive proteomic analysis of two Pneumocystis jirovecii proteomes, a distinct non-redundant Pneumocystis jirovecii (strain SE8) proteome was chosen. Seven Pneumocystis jirovecii transmembrane proteins were chosen from this proteome based on hydrophilicity, essentiality, virulence, antigenicity, pathway interaction, protein-protein network analysis, and allergenicity. OBJECTIVE: The reverse vaccinology approach was used to predict the immunogenic and antigenic epitopes of major histocompatibility complex (MHC) I, II and B-cells from the selected proteins on the basis of their antigenicity, toxicity and allergenicity. These immunogenic epitopes were linked together to construct the mRNA-based vaccine. To enhance the immunogenicity, suitable adjuvant, linkers (GPGPG, KK, and CYY), and PRDRE sequences were used. RESULTS: Through predictive modeling and confirmation via the Ramachandran plot, we assessed secondary and 3D structures. The adjuvant RpfE was incorporated to enhance the vaccine construct's immunogenicity (GRAVY index: -0.271, instability index: 39.53, antigenicity: 1.0428). The physiochemical profiling of vaccine construct was predicted it an antigenic, efficient, and potential vaccine. Notably, strong interactions were observed between the vaccine construct and TLR-3/TLR-4 (-1301.7 kcal/mol-1 and -1374.7 kcal/mol-1). CONCLUSIONS: The results predicted that mRNA-based vaccines trigger a cellular and humoral immune response, making the vaccine potential candidate against Pneumocystis jirovecii and it is more suitable for in-vitro analysis and validation to prove its effectiveness.


Assuntos
Pneumocystis carinii , Pneumonia por Pneumocystis , Proteômica , Vacinologia , Vacinas de mRNA , Proteômica/métodos , Pneumocystis carinii/imunologia , Pneumocystis carinii/genética , Humanos , Vacinologia/métodos , Vacinas de mRNA/imunologia , Pneumonia por Pneumocystis/prevenção & controle , Pneumonia por Pneumocystis/imunologia , Pneumonia por Pneumocystis/microbiologia , Vacinas Fúngicas/imunologia , Proteínas Fúngicas/imunologia , Proteínas Fúngicas/genética , Proteoma/imunologia , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Desenvolvimento de Vacinas/métodos , Vacinas Sintéticas/imunologia
2.
Front Immunol ; 15: 1426496, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39050858

RESUMO

The Zika virus (ZIKV) is an emerging virus associated with the Flaviviridae family that mainly causes infection in pregnant women and leads to several abnormalities during pregnancy. This virus has unique properties that may lead to pathological diseases. As the virus has the ability to evade immune response, a crucial effort is required to deal with ZIKV. Vaccines are a safe means to control different pathogenic infectious diseases. In the current research, a multi-epitope-based vaccination against ZIKV is being designed using in silico methods. For the epitope prediction and prioritization phase, ZIKV polyprotein (YP_002790881.1) and flavivirus polyprotein (>YP_009428568.1) were targeted. The predicted B-cell epitopes were used for MHC-I and MHC-II epitope prediction. Afterward, several immunoinformatics filters were applied and nine (REDLWCGSL, MQDLWLLRR, YKKSGITEV, TYTDRRWCF, RDAFPDSNS, KPSLGLINR, ELIGRARVS, AITQGKREE, and EARRSRRAV) epitopes were found to be probably antigenic in nature, non-allergenic, non-toxic, and water soluble without any toxins. Selected epitopes were joined using a particular GPGPG linker to create the base vaccination for epitopes, and an extra EAAAK linker was used to link the adjuvant. A total of 312 amino acids with a molecular weight (MW) of 31.62762 and an instability value of 34.06 were computed in the physicochemical characteristic analysis, indicating that the vaccine design is stable. The molecular docking analysis predicted a binding energy of -329.46 (kcal/mol) for TLR-3 and -358.54 (kcal/mol) for TLR-2. Moreover, the molecular dynamics simulation analysis predicted that the vaccine and receptor molecules have stable binding interactions in a dynamic environment. The C-immune simulation analysis predicted that the vaccine has the ability to generate both humoral and cellular immune responses. Based on the design, the vaccine construct has the best efficacy to evoke immune response in theory, but experimental analysis is required to validate the in silico base approach and ensure its safety.


Assuntos
Biologia Computacional , Epitopos de Linfócito B , Vacinas Virais , Infecção por Zika virus , Zika virus , Zika virus/imunologia , Vacinas Virais/imunologia , Infecção por Zika virus/prevenção & controle , Infecção por Zika virus/imunologia , Humanos , Epitopos de Linfócito B/imunologia , Biologia Computacional/métodos , Desenvolvimento de Vacinas , Simulação de Acoplamento Molecular , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/química , Modelos Moleculares , Imunoinformática
3.
Microb Pathog ; 194: 106801, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39025378

RESUMO

Listeria monocytogenes (L. monocytogenes) is a prevalent foodborne pathogen with a remarkable capacity to form biofilms on utensil surfaces. The Listeriolysin O (LLO) exhibits hemolytic activity, which is responsible for causing human infections. In this study, we investigated the inhibitory effect and mechanism of oregano essential oil (OEO) on L. monocytogenes, evaluated the effects on its biofilm removal and hemolytic activity. The minimum inhibitory concentration (MIC) of OEO against L. monocytogenes was 0.03 % (v/v). L. monocytogenes was treated with OEO at 3/2 MIC for 30 min the bacteria was decreased below the detection limit (10 CFU/mL) in PBS and TSB (the initial bacterial load was about 6.5 log CFU/mL). The level of L. monocytogenes in minced pork co-cultured with OEO (15 MIC) about 2.5 log CFU/g lower than that in the untreated group. The inhibitory mechanisms of OEO against planktonic L. monocytogenes encompassed perturbation of cellular morphology, elevation in reactive oxygen species levels, augmentation of lipid oxidation extent, hyperpolarization of membrane potential, and reduction in intracellular ATP concentration. In addition, OEO reduced biofilm coverage on the surface of glass slides by 62.03 % compared with the untreated group. Meanwhile, OEO (1/8 MIC) treatment reduced the hemolytic activity of L. monocytogenes to 24.6 % compared with the positive control. Molecular docking suggested carvacrol and thymol might reduce the hemolytic activity of L. monocytogenes. The results of this study demonstrate that OEO exhibits inhibitory effects against L. monocytogenes, biofilms and LLO, which had potential as natural antimicrobial for the inhibition of L. monocytogenes.

4.
Sci Rep ; 14(1): 17336, 2024 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-39068301

RESUMO

Hepatocellular carcinoma (HCC) incidence varies widely around the world and is impacted by factors such as the prevalence of chronic hepatitis B and C infections, alcohol intake, and access to healthcare. The proteins (BRAF_human, VGFR3_human, EGFR_human and UFO_human) play a vital role in hepatocellular carcinoma prognosis, which involves cell proliferation, cell growth, transmission of extracellular signals to the cell nucleus and consequently regulating many other cellular processes. Fostamatinib has been studied for its possible use in the treatment of hepatocellular cancer because it is a more convenient therapy choice for patients and has minor side effects on the human body. However, resveratrol phytochemical has been investigated for its potential use in the prevention and treatment of a wide range of disorders, including cancer, cardiovascular disease, diabetes, and neurological problems due to its frequently antioxidant, anti-inflammatory, and immune-modulating characteristics, which can aid in the prevention of chronic illnesses. This study developed de novo-based fragment-optimized resveratrol (FOR), enhancing therapeutic potential and lowering toxicity. The docking study was performed with four target proteins, and the findings reveal that the vascular endothelial growth factor receptor 3 protein possessed the highest binding energy values of -7.6 kcal/mol with FOR. Additionally, it completely fulfills the criteria of drug-likeliness rules. Thus, FOR proves to be an efficient drug candidate for future in-vivo studies against hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular , Desenho de Fármacos , Neoplasias Hepáticas , Simulação de Acoplamento Molecular , Resveratrol , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Simulação por Computador
5.
Saudi Pharm J ; 32(7): 102108, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38868175

RESUMO

Chronic exposure to opioids can lead to downregulation of astrocytic glutamate transporter 1 (GLT-1), which regulates the majority of glutamate uptake. Studies from our lab revealed that beta-lactam antibiotic, ceftriaxone, attenuated hydrocodone-induced downregulation of GLT-1 as well as cystine/glutamate antiporter (xCT) expression in central reward brain regions. In this study, we investigated the effects of escalating doses of morphine and tested the efficacy of novel synthetic non-antibiotic drug, MC-100093, and ceftriaxone in attenuating the effects of morphine exposure in the expression of GLT-1, xCT, and neuroinflammatory factors (IL-6 and TGF-ß) in the nucleus accumbens (NAc). This study also investigated the effects of morphine and beta-lactams in locomotor activity, spontaneous alternation percentage (SAP) and number of entries in Y maze since opioids have effects in locomotor sensitization. Mice were exposed to moderate dose of morphine (20 mg/kg, i.p.) on days 1, 3, 5, 7, and a higher dose of morphine (150 mg/kg, i.p.) on day 9, and these mice were then behaviorally tested and euthanized on Day 10. Western blot analysis showed that exposure to morphine downregulated GLT-1 and xCT expression in the NAc, and both MC-100093 and ceftriaxone attenuated these effects. In addition, morphine exposure increased IL-6 mRNA and TGF-ß mRNA expression, and MC-100093 and ceftriaxone attenuated only the effect on IL-6 mRNA expression in the NAc. Furthermore, morphine exposure induced an increase in distance travelled, and MC-100093 and ceftriaxone attenuated this effect. In addition, morphine exposure decreased the SAP and increased the number of arm entries in Y maze, however, neither MC-100093 nor ceftriaxone showed any attenuating effect. Our findings demonstrated for the first time that MC-100093 and ceftriaxone attenuated morphine-induced downregulation of GLT-1 and xCT expression, and morphine-induced increase in neuroinflammatory factor, IL-6, as well as hyperactivity. These findings revealed the beneficial therapeutic effects of MC-100093 and ceftriaxone against the effects of exposure to escalated doses of morphine.

6.
Saudi Pharm J ; 32(6): 102103, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38799001

RESUMO

Chemotherapeutic drugs, such as doxorubicin (Dox), are commonly used to treat a variety of malignancies. However, Dox-induced cardiotoxicity limits the drug's clinical applications. Hence, this study intended to investigate whether diosmin could prevent or limit Dox-induced cardiotoxicity in an animal setting. Thirty-two rats were separated into four distinct groups of controls, those treated with Dox (20 mg/kg, intraperitoneal, i.p.), those treated with diosmin 100 mg plus Dox, and those treated with diosmin 200 mg plus Dox. At the end of the experiment, rats were anesthetized and sacrificed and their blood and hearts were collected. Cardiac toxicity markers were analyzed in the blood, and the heart tissue was analyzed by the biochemical assays MDA, GSH, and CAT, western blot analysis (NF-kB, IL-6, TLR-4, TNF-α, iNOS, and COX-2), and gene expression analysis (ß-MHC, BNP). Formalin-fixed tissue was used for histopathological studies. We demonstrated that a Dox insult resulted in increased oxidative stress, inflammation, and hypertrophy as shown by increased MDA levels and reduced GSH content and CAT activity. Furthermore, Dox treatment induced cardiac hypertrophy and damage, as evidenced by the biochemical analysis, ELISA, western blot analysis, and gene expression analysis. However, co-administration of diosmin at both doses, 100 mg and 200 mg, mitigated these alterations. Data derived from the current research revealed that the cardioprotective effect of diosmin was likely due to its ability to mitigate oxidative stress and inflammation. However, further study is required to investigate the protective effects of diosmin against Dox-induced cardiotoxicity.

7.
Food Res Int ; 186: 114344, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729696

RESUMO

The research aimed to evaluate the effect of ultrasonication and succinylation on the functional, iron binding, physiochemical, and cellular mineral uptake efficacy of chickpea protein concentrate. Succinylation resulted in significant improvements in the water-holding capacity (WHC) (25.47 %), oil-holding capacity (OHC) (31.38 %), and solubility (5.80 %) of the chickpea protein-iron complex. Mineral bioavailability significantly increased by 4.41 %, and there was a significant increase in cellular mineral uptake (64.64 %), retention (36.68 %), and transport (27.96 %). The ferritin content of the succinylated chickpea protein-iron complex showed a substantial increase of 66.31%. Furthermore, the dual modification approach combining ultrasonication and succinylation reduced the particle size of the protein-iron complex with a substantial reduction of 83.25 %. It also resulted in a significant enhancement of 51.5 % in the SH (sulfhydryl) content and 48.92 % in the surface hydrophobicity. Mineral bioavailability and cellular mineral uptake, retention, and transport were further enhanced through dual modification. In terms of application, the addition of single and dual-modified chickpea protein-iron complex to a fruit-based smoothie demonstrated positive acceptance in sensory attributes. Overall, the combined approach of succinylation and ultrasonication to the chickpea protein-iron complex shows a promising strategy for enhancing the physiochemical and techno-functional characteristics, cellular mineral uptake, and the development of vegan food products.


Assuntos
Disponibilidade Biológica , Cicer , Ferro , Cicer/química , Ferro/química , Ferro/metabolismo , Humanos , Alimentos Fortificados , Proteínas de Plantas/química , Digestão , Minerais/química , Células CACO-2 , Ácido Succínico/química , Tamanho da Partícula , Manipulação de Alimentos/métodos , Solubilidade , Ferritinas/química , Ferritinas/metabolismo
8.
J Biomol Struct Dyn ; : 1-17, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486461

RESUMO

The presence of conditions like Alpha-1 antitrypsin deficiency, hemochromatosis, non-alcoholic fatty liver diseases and metabolic syndrome can elevate the susceptibility to hepatic cellular carcinoma (HCC). Utilizing network-based gene expression profiling via network analyst tools, presents a novel approach for drug target discovery. The significance level (p-score) obtained through Cytoscape in the intended center gene survival assessment confirms the identification of all target center genes, which play a fundamental role in disease formation and progression in HCC. A total of 1064 deferential expression genes were found. These include MCM2 with the highest degree, followed by 4917 MCM6 and MCM4 with a 3944-degree score. We investigated the regulatory kinases involved in establishing the protein-protein interactions network using X2K web tool. The docking approach yields a favorable binding affinity of -8.7 kcal/mol against the target MCM2 using Auto-Dock Vina. Interestingly after simulating the complex system via AMBER16 package, results showed that the root mean square deviation values remained within 4.74 Å for a protein and remains stable throughout the time intervals. Additionally, the ligand's fit to the protein exhibited fluctuations at some intervals but remains stable. Finally, Gibbs free energy was found to be at its lowest at 1 kcal/mol which presents the real time interactive binding of the atomic residues among inhibitor and protein. The displacement of the ligand was measured showing stable movement and displacement along the active site. These findings increased our understanding for potential biomarkers in hepatocellular carcinoma and an experimental approach will further enhance our outcomes in future.Communicated by Ramaswamy H. Sarma.

9.
Neuroscience ; 537: 58-83, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38036059

RESUMO

INTRODUCTION: Preclinical studies demonstrated that beta-lactams have neuroprotective effects in conditions involving glutamate neuroexcitotoxicity, including substance use disorders (SUDs). This meta-analysis aims to analyze the existing evidences on the effects of beta-lactams as glutamate transporter 1 (GLT-1) upregulators in animal models of SUDs, identification of gaps in the literature, and setting the stage for potential translation into clinical phases. METHODS: Meta-analysis was conducted on preclinical studies retrieved systematically from MEDLINE and ScienceDirect databases. Abused substances were identified by refereeing to the National Institute on Drug Abuse (NIDA). The results were quantitatively described with a focus on the behavioral outcomes. Treatment effect sizes were described using standardized mean difference, and they were pooled using random effect model. I2-statistic was used to assess heterogeneity, and Funnel plot and Egger's test were used for assessment of publication bias. RESULTS: Literature search yielded a total of 71 studies that were eligible to be included in the analysis. Through these studies, the effects of beta-lactams were evaluated in animal models of nicotine, cannabis, amphetamines, synthetic cathinone, opioids, ethanol, and cocaine use disorders as well as steroids-related aggressive behaviors. Meta-analysis showed that treatments with beta-lactams consistently reduced the pooled undesired effects of the abused substances in several paradigms, including drug-self administration, conditioned place preference, drug seeking behaviors, hyperlocomotion, withdrawal syndromes, tolerance to analgesic effects, hyperalgesia, and hyperthermia. CONCLUSION: This meta-analysis revealed that enhancing GLT-1 expression in the brain through beta-lactams seemed to be a promising treatment approach in the context of substance use disorders, as indicated by results in animal models.


Assuntos
Síndrome de Abstinência a Substâncias , Transtornos Relacionados ao Uso de Substâncias , Animais , beta-Lactamas/uso terapêutico , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico , Nicotina , Agonistas de Receptores de Canabinoides
10.
ACS Omega ; 8(48): 45405-45413, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38075815

RESUMO

5-Fluorouracil (5-FU) is one of the most potent drugs against solid tumors. However, its parenteral administration is associated with systemic toxicity, while its topical application has limited percutaneous absorption. To overcome these limitations, the current study undertakes the formulation of 5-FU as niosomal vesicles that were coated with hyaluronic acid to improve its targeting efficiency for cancer cells. The niosomes were prepared by the thin-film hydration method using cholesterol as physiological lipid and nonionic surfactants (Tween 80 and Span 80) in the ratio of 1:1. The niosomal vesicles were characterized for their size, size distribution, viscosity, surface tension, density, and drug entrapment efficiency. The vesicles were within the particle size range of 337-478 nm with relatively homogeneous particle size distribution (PDI ≤ 0.5). The ζ-potential and drug entrapment efficiency of coated formulations (F2 and F4) were comparatively higher than corresponding noncoated formulations (F1 and F3). The release behavior of 5-FU from niosomal vesicles using a dialysis membrane depicts that initial burst drug release was higher for F1 and F3 due to their smaller particle size in comparison to their coated counterparts. However, the release was more controlled for F4 due to the larger particle size, higher viscosity, and entrapped fraction of the formulation. The permeation of the drug through the rat's skin was comparatively higher in the case of noncoated formulations than their coated counterparts (p ≤ 0.05). This could be attributed to their small particle size and lower surface tension. In the case of coated formulations, the hydrophilic hyaluronic acid hinders the permeation of the drug through the lipid bilayer membrane of the skin. The retention of the drug in the skin was found to be in the range of 20-40%, which is sufficient to achieve optimum drug concentration in the tumorous tissue. Overall, the study successfully designed novel niosomal carrier systems for improved 5-FU delivery after topical application.

11.
Front Oncol ; 13: 1322875, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38125945

RESUMO

Introduction: Early-life osteosarcoma is associated with severe morbidity and mortality, particularly affecting young children and adults. The present cancer treatment regimen is exceedingly costly, and medications like ifosfamide, doxorubicin, and cisplatin have unneeded negative effects on the body. With the introduction of hyphenated technology to create medications based on plant molecules, the application of ayurvedic medicine as a new dimension (formulation, active ingredients, and nanoparticles) in the modern period is rapidly growing. The primary source of lead compounds for the development of medications for avariety of ailments is plants and their products. Traditionally, Cuminum cyminum (cumin) has been used as medication to treat a variety of illnesses and conditions. Methods: The cumin seed was successfully extracted with solvents Hexane, Chloroform, Methanol, Ethanol and Acetone. Following the solvent extraction, the extract residue was assayed in MG63 cells for their anti-proliferative properties. Results: First, we used the [3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide] (MTT) assay to test the extracted residue's cytotoxicity. The results show that hexane extract Half-maximal inhibitory concentration (IC50 86 µG/mL) effciently inhibits cells by causing programmed cell death. Furthermore, using the Acridine orange/ethidium bromide (AO/EB) staining method, the lactate dehydrogenase assay, and the reactive oxygen species assay using the Dichloro-dihydro-fluorescein diacetate (DCHFDA) staining method, we have demonstrated that the hexane extract causes apoptosis in MG63 cells. Furthermore, flow cytometry research revealed that the hexane extract stops the cell cycle in the S phase. In addition, the hexane extract limits colony formation and the migration potential as shown by the scratch wound healing assay. Furthermore, the extract from cumin seeds exhibits remarkable bactericidal properties against infections that are resistant to drugs. Gas chromatography analysis was used to quantitatively determine the hexane and methanolic extract based on the experimental data. The primary chemical components of the extract are revealed by the study, and these help the malignant cells heal. The present study finds that there is scientific validity in using cumin seeds as a novel method of anticancer therapy after undergoing both intrinsic and extrinsic research.

12.
Front Chem ; 11: 1287599, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116103

RESUMO

Background: Bacterial metabolites play a crucial role in human health and have proven effective in treating various diseases. In this study, the 16S rRNA method and streaking were employed to isolate and molecularly identify a bacterial strain, with the goal of characterizing bioactive volatile metabolites extracted using nonpolar and polar solvents. Methods: Gas chromatography-mass spectrometry (GC-MS) analysis was conducted to identify 29 compounds in the bacterial metabolites, including key compounds associated with Bacillus spp. The main compounds identified included 2-propanone, 4,4-ethylenedioxy-1-pentylamine, 1,2-benzenedicarboxylic acid, 1,1-butoxy-1-isobutoxy-butane, and 3,3-ethoxycarbonyl-5-hydroxytetrahydropyran-2-one. Results: The literature indicates the diverse biological and pharmacological applications of these compounds. Different concentrations of the metabolites from Bacillus species were tested for biological activities, revealing significant inhibitory effects on anti-diabetic activity (84.66%), anti-inflammatory activity (99%), antioxidant activity (99.8%), and anti-hemolytic activity (90%). Disc diffusion method testing also demonstrated a noteworthy inhibitory effect against tested strains. Conclusion: In silico screening revealed that 1,2-benzenedicarboxylic acid exhibited anticancer activity and promising drug-designing properties against epithelial glioblastoma cancer genes. The study highlights the potential of Bacillus spp. as a valuable target for drug research, emphasizing the significance of bacterial metabolites in the production of biological antibacterial agents.

13.
Sci Rep ; 13(1): 22882, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38129644

RESUMO

The current study focuses on the submerged fermentation of tyrosine hydroxylase (TH) from Aspergillus oryzae IIB-9 and its immobilization on zinc oxide nanocrystals (ZnO-NPs) for increased L-dopa production. The volume of Vogel's medium (75 ml), period of incubation (72 h), initial pH (5.5), and size of inoculum (1.5 ml) were optimal for maximum TH activity. The watch glass-dried (WG) and filter paper-dried (FP) ZnO-NPs were prepared and characterized using analytical techniques. The UV-Vis spectra revealed 295 and 285 nm absorption peaks for WG-ZnO-NPs and FP-ZnO-NPs dispersed in isopropanol. X-ray diffraction analysis confirmed the crystalline nature of ZnO-NPs. FTIR spectra band from 740 to 648.1/cm and 735.8/cm to 650.1/cm showed the stretching vibrations of WG-ZnO-NPs and FP-ZnO-NPs, respectively. The particle size of ZnO-NPs observed by scanning electron microscopy (SEM) images was between 130 and 170 nm. Furthermore, the stability of immobilized TH on ZnO-NPs was determined by varying the incubation period (10 min for WG-NPs and 15 min for FP-NPs) and temperature (45 °C and 30 °C for WG and FP-NPs, respectively). Incubating enzymes with various copper, iron, manganese, and zinc salts studied the catalytic efficiency of TH. Immobilization of TH on ZnO-NPs resulted in an 11.05-fold increase in TH activity, thus enhancing stability and catalytic efficiency.


Assuntos
Aspergillus oryzae , Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Óxido de Zinco/química , Tirosina 3-Mono-Oxigenase , Levodopa , Testes de Sensibilidade Microbiana , Espectroscopia de Infravermelho com Transformada de Fourier , Nanopartículas/química , Antibacterianos/química , Nanopartículas Metálicas/química , Difração de Raios X
14.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958641

RESUMO

Khat (Catha edulis) is an evergreen shrub whose buds and leaves give a state of delight and euphoria when chewed. Cathinone, an amphetamine-like stimulant that is among the active ingredients in khat, is able to downregulate glutamate transporter subtype I (GLT-1). Neurobehavioral dysfunctions such as altered locomotor activity, anorexia, and nociception have been observed in animals exposed to cathinone. Interestingly, treatment with a ß-lactam antibiotic such as ceftriaxone, which upregulates GLT-1, normalizes cathinone-induced conditioned place preference, and alters repetitive movements in rats. However, little is known about the role of the glutamatergic system in memory dysfunction and anxiety-like behaviors in mice exposed to khat. We found here that clavulanic acid, a ß-lactam-containing compound and GLT-1 upregulator, would modulate the neurobehavioral changes, including memory impairment and anxiety-like behaviors, associated with repeated exposure of mice to khat. Our data supported that clavulanic acid could improve memory impairment and anxiety-like behaviors through upregulating GLT-1 in the nucleus accumbens (NAc), an effect abolished with a selective GLT-1 blocker. This upregulation was associated with restored glutamate/cystine antiporter expression in the NAc using a Western blotting assay. Cathine and cathinone were identified in khat extract using the gas chromatography technique. Our work provides preclinical insight into the efficacy of ß-lactam-containing compounds for the attenuation of neurobehavioral changes induced by khat exposure.


Assuntos
Catha , Núcleo Accumbens , Camundongos , Ratos , Animais , Ácido Clavulânico/farmacologia , Núcleo Accumbens/metabolismo , Ansiedade/induzido quimicamente , Ansiedade/tratamento farmacológico , Transtornos da Memória/metabolismo , Anfetamina/metabolismo
15.
Biomedicines ; 11(10)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37893028

RESUMO

Indoxyl sulfate (IS) is a metabolic byproduct of indole metabolism. IS readily interacts with the mitochondrial redox metabolism, leading to altered renal function. The ß-carotene oxygenase-2 (BCO2) enzyme converts carotenoids to intermediate products. However, the role of ß-carotene (BC) in IS-induced renal dysfunction in zebrafish and their modulatory action on BCO2 and mitochondrial inflammations have not been explored yet. Hence, the present study is designed to investigate the role of BC in the attenuation of IS-induced renal dysfunction via regulations of mitochondrial redox balance by BCO2 actions. Renal dysfunction was induced by exposure to IS (10 mg/L/hour/day) for 4 weeks. BC (50 and 100 mg/L/hour/day) and coenzyme Q10 (CoQ10; 20 mg/L/hour/day) were added before IS exposure. BC attenuated the IS-induced increase in blood urea nitrogen (BUN) and creatinine concentrations, adenosine triphosphate (ATP), and complex I activity levels, and the reduction of renal mitochondrial biomarkers, i.e., BCO2, superoxide dismutase-2 (SOD2), glutathione peroxidase-1 (GPX1), reduced and oxidized glutathione (GSH/GSSG) ratio, and carbonylated proteins. Moreover, renal histopathological changes were analyzed by the eosin and hematoxylin staining method. As a result, the administration of BC attenuated the IS-induced renal damage via the regulation of mitochondrial function.

16.
Acta Biochim Pol ; 70(4): 885-889, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37883728

RESUMO

Myelomeningocele (MMC) is a congenital disease. For a long time, molecular mechanism of MMC, the role of folate receptor and transporter proteins remain unclear. Folate from maternal lumen to developing embryo is carried out with the help of folate transporters (SLC46A1, SLC19A1, FOLH1 and SLC25A32) and folate receptor (FOLR1, FOLR2 and FOLR3). Due to the loss of function of these important genes, complications can facilitate the risk of MMC. This study focused on the mutational analysis of FOLR1 and FOLR2 genes in children suffering from MMC. Myelomeningocele is a rare disorder so twenty blood samples from the children were collected. Primers of selected exons for FOLR1 and FOLR2 genes were designed with the help of PrimerFox software. Extracted DNA was amplified, and PCR based mutational analysis was done to check any type of mutation/SNPs in these genes. Sanger sequencing method was performed to confirm mutation in FOLR1 and FOLR2 genes. The results showed that certain environmental factors (smoking, low socio-economic status of mother bearing MMC fetus) were found to be significantly (P<0.05) associated with MMC but no mutation in the selected exons of FOLR1 and FOLR2 genes was detected. Thus, genetic variations in the folate transporter gene may have no role in the progression of MMC in the studied population.


Assuntos
Receptor 2 de Folato , Meningomielocele , Criança , Humanos , Meningomielocele/genética , Proteínas de Transporte/genética , Éxons/genética , Ácido Fólico/metabolismo , Receptor 1 de Folato/genética , Transportador de Folato Acoplado a Próton/genética , Receptor 2 de Folato/genética
17.
Eur J Pharmacol ; 959: 176086, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37832863

RESUMO

Experimental autoimmune encephalitis (EAE), an animal model of multiple sclerosis (MS), provides significant insights into the mechanisms that initiate and drive autoimmunity. MS is a chronic autoimmune disease of the central nervous system, characterized by inflammatory infiltration associated with demyelination. T lymphocyte cells play a crucial role in MS, whereas natural T regulatory (nTreg) cells prevent autoimmune inflammation by suppressing lymphocyte activity. This study sought to investigate the role of PD98059, a selective MAP kinase inhibitor, in Th1, Th9, Th17, and nTreg cells using the SJL/J mouse model of EAE. Following EAE development, the mice were intraperitoneally administered PD98059 (5 mg/kg for two weeks) daily. We evaluated the effects of PD98059 on Th1 (IFN-γ and T-bet), Th9 (IL-9 and IRF4), Th17 (IL-17A and RORγT), and nTreg (FoxP3 and Helios) cells in the spleen using flow cytometry. Moreover, we explored the effects of PD98059 on the IFN-γ, T-bet, IL-9, IRF4, IL-17A, RORγT, FoxP3, and Helios mRNA and protein levels in brain tissues using qRT-PCR and Western blot analyses. PD98059 treatment significantly decreased the proportion of CD4+IFN-γ+, CD4+T-bet+, CD4+IL-9+, CD4+IRF4+, CD4+IL-17A+, CD4+RORγT+, CD4+IL-17A+, and CD4+RORγT+ cells while increasing that of CD4+FoxP3+ and CD4+Helios+ cells. In addition, PD98059 administration decreased the mRNA and protein levels of IFN-γ, T-bet, IL-9, IRF4, IL-17A, and RORγT but increased those of FoxP3 and Helios in the brain tissue of EAE mice. Our findings suggest that PD98059 corrects immune dysfunction in EAE mice, which is concurrent with the modulation of multiple signaling pathways.


Assuntos
Antineoplásicos , Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Encefalomielite Autoimune Experimental/tratamento farmacológico , Esclerose Múltipla/complicações , Interleucina-17/genética , Interleucina-17/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Interleucina-9/metabolismo , Interleucina-9/farmacologia , Modelos Animais de Doenças , Antineoplásicos/farmacologia , RNA Mensageiro/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Células Th17 , Camundongos Endogâmicos C57BL , Células Th1
18.
Acta Biochim Pol ; 70(3): 591-598, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37669474

RESUMO

Mutation in the VEGF gene disturbs the production of chondrocytes and angiogenesis which are essential for cartilage health. Cytokines and chemokines produced by auto-activation of B-cells degrade cartilage. Bruton's Tyrosine Kinase (BTK) plays a crucial role in the activation of these B-cells. VEGF has a central part in angiogenesis, in the recruitment of endothelial cells, and is involved in mechanisms that result in tumour formation. The objective of this research is to investigate the potential role of VEGF polymorphism in the development of Rheumatoid Arthritis (RA) and the screening of potential natural, synthetic BTK inhibitor compounds as possible in-silico chemotherapeutic agents to control auto-activation of B-cells and cartilage degrading cytokines. In this study, it had been shown that allele A frequency was significantly higher than that of allele C in RA-positive patients as compared to controls. Hence it depicts that allele A of VEGF (rs699947) can increase the risk of RA while allele C has a protective role. The phytochemicals which showed maximum binding affinity at the inhibitory site of BTK include beta boswellic acid, tanshinone, and baicalin. These phytochemicals as BTK inhibitor give insights to use them as anti-arthritic compounds by nanoparticle drug delivery mechanism.


Assuntos
Artrite Reumatoide , Nanopartículas , Humanos , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Citocinas , Células Endoteliais , Fator A de Crescimento do Endotélio Vascular/genética
19.
Acta Biochim Pol ; 70(3): 599-600, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37677069

RESUMO

The natural Fisetin and its derivatives have been shown to have effective bioactivity and strong pharmacological profile, which is continuously drawing the interest of therapeutic applications to the development of new biomolecules against Breast cancer and Monkeypox, and Marburg viral infection, while computational approaches and the study of their structure-activity relationship (SAR) are the most eloquent and reliable platform for performing their hypothetical profile renovation. So, the main perspective of this investigation is to evaluate dual function of Fisetin and its derivatives against both virus and cancerous target. First and foremost, the prediction of activity spectra for materials (PASS) valuation has provided preliminary data on the antiviral, antibacterial, antiparasitic, and anti-cancer possibilities of the mentioned compounds. According to the evidence, PASS predicted scores were shown to perform better in antineoplastic and antiviral than antibacterial, and antiparasitic efficiency; as evidenced by their higher PASS scores in antineoplastic and antiviral drug tests. Breast cancer, Monkeypox, and Marburg virus have been selected as targeted pathogens, and different in silico studies were conducted to determine the dual function of mention derivatives. The "Lipinski five rules," on the other hand, has been subjected to extensive testing for drug-like characteristics. Molecular docking against Breast cancer, Monkeypox, and Marburg virus have been accomplished after confirmation of their bioactivity. The molecular docking evaluation against targeted disease displayed re-markable binding affinity and non-bonding engagement, with most of the results indicating that derivatives are more effective than the FDA approved standard antiviral, and antineoplastic drugs. Finally, the ADMET characteristics have been computed, and they indicate that the substance is suitable to use and did not have any chance to produce adverse effects on aquatic or non-aquatic environment, as well as having a highly soluble capacity in water medium, high G.I absorption rate, with outstanding bioavailability index. Therefore, these mentioned Fisetin derivatives could be suggested as potential medication against Breast cancer and newly reported Monkeypox, and Marburg virus, and may further proceed for laboratory experiment, synthesis, and clinical trials to evaluate their practical value.


Assuntos
Marburgvirus , Mpox , Neoplasias , Humanos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Antivirais/farmacologia , Antibacterianos , Antiparasitários
20.
ACS Omega ; 8(37): 33358-33366, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37744851

RESUMO

Recently, nanobiotechnology has attracted a lot of attention, as it is a rapidly emerging field that is still growing and developing efficient and advanced therapeutic protocols under the umbrella of nanomedicine. It can revolutionize solutions to biomedical problems by developing effective treatment protocols and therapeutics. However, focus and research are still required to make these therapeutics more effective and safer to use. In this study, iron oxide nanoparticles were synthesized from Madhuca indica extract using green synthesis protocols. The nanoparticles were further characterized based on their absorption spectrum, size, structural morphology, and other related parameters. Biological assays were also performed to evaluate biological applications for the synthesized nanoparticles. In silico analysis was performed to assess the druglike properties of synthesized nanoparticles. The results proved an optimized synthesis of the iron oxide nanoparticles with the size of 56 nm confirmed by SEM. The FTIR analysis predicted the presence of nitro and carbonyl groups in the synthesized nanoparticles. The 81% DPPH inhibition confirmed the antioxidant activity, and the 96.20% inhibition of egg albumin protein confirmed the anti-inflamatory activity. Additionally, the 73.26% inhibition of α-amylase, which was more than that of the control used, confirmed the antidiabetic activity. The ADMET analysis confirmed the synthesized nanoparticles as potential therapeutic candidates as well. However, further evaluation for safety concerns is still required to use these FeONPs as potential therapeutic agents. This study can be proved as a significant contribution to the scientific community and a gateway to the future scientists who are willing to work on nanomedicine and nanobiotechnology. ADMET analysis confirmed the synthesized nanoparticles as potential therapeutic candidates as well. However, further evaluation for safety concerns is still required to use these FeONPs and potential therapeutic agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA