Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 37(8): 110057, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34818542

RESUMO

The gut microbiome exhibits extreme compositional variation between hominid hosts. However, it is unclear how this variation impacts host physiology across species and whether this effect can be mediated through microbial regulation of host gene expression in interacting epithelial cells. Here, we characterize the transcriptional response of human colonic epithelial cells in vitro to live microbial communities extracted from humans, chimpanzees, gorillas, and orangutans. We find that most host genes exhibit a conserved response, whereby they respond similarly to the four hominid microbiomes. However, hundreds of host genes exhibit a divergent response, whereby they respond only to microbiomes from specific host species. Such genes are associated with intestinal diseases in humans, including inflammatory bowel disease and Crohn's disease. Last, we find that inflammation-associated microbial species regulate the expression of host genes previously associated with inflammatory bowel disease, suggesting health-related consequences for species-specific host-microbiome interactions across hominids.


Assuntos
Microbioma Gastrointestinal/genética , Regulação da Expressão Gênica/genética , Hominidae/microbiologia , Animais , Bactérias/genética , Células Epiteliais/metabolismo , Fezes/microbiologia , Expressão Gênica/genética , Gorilla gorilla/microbiologia , Hominidae/genética , Humanos , Doenças Inflamatórias Intestinais/genética , Microbiota/genética , Pan troglodytes/microbiologia , Filogenia , Pongo/microbiologia , RNA Ribossômico 16S/genética , Especificidade da Espécie
2.
Sci Rep ; 9(1): 1534, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30733491

RESUMO

Opioid abuse is now the most common cause of accidental death in the US. Although opioids and most other drugs of abuse acutely increase signaling mediated by midbrain dopamine (DA)-synthesizing neurons, little is known about long-lasting changes in DA cells that may contribute to continued opioid abuse, craving, and relapse. A better understanding of the molecular and cellular bases of opioid abuse could lead to advancements in therapeutics. This study comprises, to our knowledge, the first unbiased examination of genome-wide changes in midbrain gene expression associated with human opioid abuse. Our analyses identified differentially expressed genes and distinct gene networks associated with opioid abuse, specific genes with predictive capability for subject assignment to the opioid abuse cohort, and genes most similarly affected in chronic opioid and cocaine abusers. We also identified differentially expressed long noncoding RNAs capable of regulating known drug-responsive protein-coding genes. Opioid-regulated genes identified in this study warrant further investigation as potential biomarkers and/or therapeutic targets for human substance abuse.


Assuntos
Biomarcadores/metabolismo , Cocaína/farmacologia , Redes Reguladoras de Genes , Mesencéfalo/metabolismo , Transtornos Relacionados ao Uso de Opioides/patologia , RNA Longo não Codificante/metabolismo , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Área Sob a Curva , Estudos de Casos e Controles , Humanos , Concentração de Íons de Hidrogênio , Mesencéfalo/química , Mesencéfalo/efeitos dos fármacos , Pessoa de Meia-Idade , Inibidor de NF-kappaB alfa/genética , Inibidor de NF-kappaB alfa/metabolismo , Transtornos Relacionados ao Uso de Opioides/genética , Transtornos Relacionados ao Uso de Opioides/metabolismo , Curva ROC
3.
Redox Biol ; 14: 686-693, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29179108

RESUMO

Late onset Alzheimer's disease (AD) is a multifactorial disorder, with AD risk influenced by both environmental and genetic factors. Recent genome-wide association studies (GWAS) have identified genetic loci associated with increased risk of developing AD. The MS4A (membrane-spanning 4-domains subfamily A) gene cluster is one of the most significant loci associated with AD risk, and MS4A6A expression is correlated with AD pathology. We identified a single nucleotide polymorphism, rs667897, at the MS4A locus that creates an antioxidant response element and links MS4A6A expression to the stress responsive Cap-n-Collar (CNC) transcription factors NRF1 (encoded by NFE2L1) and NRF2 (encoded by NFE2L2). The risk allele of rs667897 generates a strong CNC binding sequence that is activated by proteostatic stress in an NRF1-dependent manner, and is associated with increased expression of the gene MS4A6A. Together, these findings suggest that the cytoprotective CNC regulatory network aberrantly activates MS4A6A expression and increases AD risk in a subset of the population.


Assuntos
Doença de Alzheimer/genética , Elementos de Resposta Antioxidante , Proteínas de Membrana/genética , Regulação para Cima , Alelos , Células Hep G2 , Humanos , Fator 1 Nuclear Respiratório/metabolismo , Polimorfismo de Nucleotídeo Único , Ativação Transcricional
4.
Sci Rep ; 7(1): 2720, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28577019

RESUMO

Sarcoidosis is a complex systemic granulomatous disorder of unknown etiology. Genome-wide association studies have not been able to explain a causative role for nucleotide variation in its pathogenesis. The goal of the present study was to identify the gene expression profile and the cellular pathways altered in sarcoidosis monocytes via RNA-sequencing. Peripheral blood monocytes play a role in sarcoidosis inflammation. Therefore, we determined and compared the transcriptional signature of monocytes from peripheral blood from sarcoidosis patients and healthy controls via RNA-sequencing. We found 2,446 differentially expressed (DE) genes between sarcoidosis and healthy control monocytes. Analysis of these DE genes showed enrichment for ribosome, phagocytosis, lysosome, proteasome, oxidative phosphorylation and metabolic pathways. RNA-sequencing identified upregulation of genes involved in phagocytosis and lysosomal pathway in sarcoidosis monocytes, whereas genes involved in proteasome degradation and ribosomal pathways were downregulated. Further studies are needed to investigate the role of specific genes involved in the identified pathways and their possible interaction leading to sarcoidosis pathology.


Assuntos
Regulação da Expressão Gênica , Redes e Vias Metabólicas , Monócitos/metabolismo , Sarcoidose/genética , Sarcoidose/metabolismo , Transdução de Sinais , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Estadiamento de Neoplasias , Reprodutibilidade dos Testes
5.
mSystems ; 1(4)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27709125

RESUMO

Many studies have demonstrated the importance of the gut microbiota in healthy and disease states. However, establishing the causality of host-microbiota interactions in humans is still challenging. Here, we describe a novel experimental system to define the transcriptional response induced by the microbiota in human cells and to shed light on the molecular mechanisms underlying host-gut microbiota interactions. In primary human colonic epithelial cells, we identified over 6,000 genes that change expression at various time points following co-culturing with the gut microbiota of a healthy individual. Among the differentially expressed genes we found a 1.8-fold enrichment of genes associated with diseases that have been previously linked to the microbiome, such as obesity and colorectal cancer. In addition, our experimental system allowed us to identify 87 host SNPs that show allele-specific expression in 69 genes. Furthermore, for 12 SNPs in 12 different genes, allele-specific expression is conditional on the exposure to the microbiota. Of these 12 genes, eight have been associated with diseases linked to the gut microbiota, specifically colorectal cancer, obesity and type 2 diabetes. Our study demonstrates a scalable approach to study host-gut microbiota interactions and can be used to identify putative mechanisms for the interplay between host genetics and microbiota in health and disease.

6.
Int J Cell Biol ; 2014: 236246, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25197279

RESUMO

Lung cancer is the second most common cancer and the leading cause of cancer related mortality in both men and women. Each year, more people die of lung cancer than of colon, breast, and prostate cancers combined. It is widely accepted that tumor metastasis is a formidable barrier to effective treatment of lung cancer. The bone is one of the frequent metastatic sites for lung cancer occurring in a large number of patients. Bone metastases can cause a wide range of symptoms that could impair quality of life of lung cancer patients and shorten their survival. We strongly believe that molecular targets (tumor-related and bone microenvironment based) that have been implicated in lung cancer bone metastases hold great promise in lung cancer therapeutics. Thus, this paper discusses some of the emerging molecular targets that have provided insights into the cascade of metastases in lung cancer with the focus on bone invasion. It is anticipated that the information gathered might be useful in future efforts of optimizing lung cancer treatment strategies.

7.
Bioorg Med Chem Lett ; 24(18): 4553-4556, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25131538

RESUMO

The clinical application of gallium compounds as anticancer agents is hampered by development of resistance. As a potential strategy to overcome the limitation, eight series of compounds were identified through virtual screening of AXL kinase homology model. Anti-proliferative studies were carried using gallium-sensitive (S) and gallium-resistant (R) human lung adenocarcinoma (A549) cells. Compounds 5476423 and 7919469 were identified as leads. The IC50 values from treating R-cells showed compounds 5476423 and 7919469 had 80 fold and 13 fold increased potency, respectively, compared to gallium acetylacetonate (GaAcAc). The efficacy of GaAcAc against R-cells was increased 2 fold and 1.2 fold when combined with compounds 5476423 and 7919469, respectively. Compared with S-cells, R-cells showed elevated expression of AXL protein, which was significantly suppressed through treatments with the lead compounds. It is anticipated that the lead compounds could be applied in virtual screening programs to identify novel scaffolds for new therapeutic agents as well as combinatorial therapy agents in gallium resistant lung cancer.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Naftalenos/farmacologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Pirazóis/farmacologia , Quinolinas/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Tetrazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Gálio/farmacologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Estrutura Molecular , Naftalenos/química , Proteínas Proto-Oncogênicas/metabolismo , Pirazóis/química , Quinolinas/química , Receptores Proteína Tirosina Quinases/metabolismo , Relação Estrutura-Atividade , Tetrazóis/química , Receptor Tirosina Quinase Axl
8.
Biochem Pharmacol ; 84(9): 1186-95, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22917559

RESUMO

Catecholic drugs had been reported to be metabolized through conjugation reactions, particularly methylation and sulfation. Whether and how these two Phase II conjugation reactions may occur in a concerted manner, however, remained unclear. The current study was designed to investigate the methylation and/or sulfation of five catecholic drugs. Analysis of the spent media of HepG2 cells metabolically labeled with [(35)S]sulfate in the presence of individual catecholic drugs revealed the presence of two [(35)S]sulfated metabolites for dopamine, epinephrine, isoproterenol, and isoetharine, but only one [(35)S]sulfated metabolite for apomorphine. Further analyses using tropolone, a catechol O-methyltransferase (COMT) inhibitor, indicated that one of the two [(35)S]sulfated metabolites of dopamine, epinephrine, isoproterenol, and isoetharine was a doubly conjugated (methylated and sulfated) product, since its level decreased proportionately with increasing concentrations of tropolone added to the labeling media. Moreover, while the inhibition of methylation resulted in a decrease of the total amount of [(35)S]sulfated metabolites, sulfation appeared to be capable of compensating the suppressed methylation in the metabolism of these four catecholic drugs. A two-stage enzymatic assay showed the sequential methylation and sulfation of dopamine, epinephrine, isoproterenol, and isoetharine mediated by, respectively, the COMT and the cytosolic sulfotransferase SULT1A3. Collectively, the results from the present study implied the concerted actions of the COMT and SULT1A3 in the metabolism of catecholic drugs.


Assuntos
Catecol O-Metiltransferase/metabolismo , Catecóis/metabolismo , Sulfotransferases/metabolismo , Arilsulfotransferase , Inibidores de Catecol O-Metiltransferase , Células Hep G2 , Humanos , Metilação , Solubilidade , Ésteres do Ácido Sulfúrico/metabolismo , Tropolona/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA