Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
2.
Blood ; 143(23): 2386-2400, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446698

RESUMO

ABSTRACT: Hemophagocytic lymphohistiocytosis (HLH) comprises a severe hyperinflammatory phenotype driven by the overproduction of cytokines, many of which signal via the JAK/STAT pathway. Indeed, the JAK1/2 inhibitor ruxolitinib has demonstrated efficacy in preclinical studies and early-phase clinical trials in HLH. Nevertheless, concerns remain for ruxolitinib-induced cytopenias, which are postulated to result from the blockade of JAK2-dependent hematopoietic growth factors. To explore the therapeutic effects of selective JAK inhibition in mouse models of HLH, we carried out studies incorporating the JAK1 inhibitor itacitinib, JAK2 inhibitor fedratinib, and JAK1/2 inhibitor ruxolitinib. All 3 drugs were well-tolerated and at the doses tested, they suppressed interferon-gamma (IFN-γ)-induced STAT1 phosphorylation in vitro and in vivo. Itacitinib, but not fedratinib, significantly improved survival and clinical scores in CpG-induced secondary HLH. Conversely, in primary HLH, in which perforin-deficient (Prf1-/-) mice are infected with lymphocytic choriomeningitis virus (LCMV), itacitinib, and fedratinib performed suboptimally. Ruxolitinib demonstrated excellent clinical efficacy in both HLH models. RNA-sequencing of splenocytes from LCMV-infected Prf1-/- mice revealed that itacitinib targeted inflammatory and metabolic pathway genes in CD8 T cells, whereas fedratinib targeted genes regulating cell proliferation and metabolism. In monocytes, neither drug conferred major transcriptional impacts. Consistent with its superior clinical effects, ruxolitinib exerted the greatest transcriptional changes in CD8 T cells and monocytes, targeting more genes across several biologic pathways, most notably JAK-dependent proinflammatory signaling. We conclude that JAK1 inhibition is sufficient to curtail CpG-induced disease, but combined inhibition of JAK1 and JAK2 is needed to best control LCMV-induced immunopathology.


Assuntos
Modelos Animais de Doenças , Linfo-Histiocitose Hemofagocítica , Nitrilas , Pirazóis , Pirimidinas , Animais , Pirimidinas/farmacologia , Linfo-Histiocitose Hemofagocítica/tratamento farmacológico , Linfo-Histiocitose Hemofagocítica/induzido quimicamente , Linfo-Histiocitose Hemofagocítica/patologia , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Camundongos , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 1/metabolismo , Janus Quinase 1/genética , Pirróis/farmacologia , Pirróis/uso terapêutico , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Camundongos Endogâmicos C57BL , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT1/genética , Inibidores de Janus Quinases/farmacologia , Inibidores de Janus Quinases/uso terapêutico , Piperidinas/farmacologia , Humanos , Benzenossulfonamidas , Hidrocarbonetos Aromáticos com Pontes , Pirrolidinas
3.
Blood Adv ; 7(18): 5608-5623, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37522715

RESUMO

ETS variant 6 (ETV6) encodes a transcriptional repressor expressed in hematopoietic stem and progenitor cells (HSPCs), where it is required for adult hematopoiesis. Heterozygous pathogenic germline ETV6 variants are associated with thrombocytopenia 5 (T5), a poorly understood genetic condition resulting in thrombocytopenia and predisposition to hematologic malignancies. To elucidate how germline ETV6 variants affect HSPCs and contribute to disease, we generated a mouse model harboring an Etv6R355X loss-of-function variant, equivalent to the T5-associated variant ETV6R359X. Under homeostatic conditions, all HSPC subpopulations are present in the bone marrow (BM) of Etv6R355X/+ mice; however, these animals display shifts in the proportions and/or numbers of progenitor subtypes. To examine whether the Etv6R355X/+ mutation affects HSPC function, we performed serial competitive transplantation and observed that Etv6R355X/+ lineage-sca1+cKit+ (LSK) cells exhibit impaired reconstitution, with near complete failure to repopulate irradiated recipients by the tertiary transplant. Mechanistic studies incorporating cleavage under target and release under nuclease assay, assay for transposase accessible chromatin sequencing, and high-throughput chromosome conformation capture identify ETV6 binding at inflammatory gene loci, including multiple genes within the tumor necrosis factor (TNF) signaling pathway in ETV6-sufficient mouse and human HSPCs. Furthermore, single-cell RNA sequencing of BM cells isolated after transplantation reveals upregulation of inflammatory genes in Etv6R355X/+ progenitors when compared to Etv6+/+ counterparts. Corroborating these findings, Etv6R355X/+ HSPCs produce significantly more TNF than Etv6+/+ cells post-transplantation. We conclude that ETV6 is required to repress inflammatory gene expression in HSPCs under conditions of hematopoietic stress, and this mechanism may be critical to sustain HSPC function.


Assuntos
Células-Tronco Hematopoéticas , Trombocitopenia , Animais , Humanos , Camundongos , Medula Óssea , Células da Medula Óssea/metabolismo , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Trombocitopenia/metabolismo , Variante 6 da Proteína do Fator de Translocação ETS
4.
Front Immunol ; 14: 1137037, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37228616

RESUMO

Background: Primary hemophagocytic lymphohistiocytosis (pHLH) is an inherited inflammatory syndrome driven by the exuberant activation of interferon-gamma (IFNg)-producing CD8 T cells. Towards this end, ruxolitinib treatment or IFNg neutralization (aIFNg) lessens immunopathology in a model of pHLH in which perforin-deficient mice (Prf1-/-) are infected with Lymphocytic Choriomeningitis virus (LCMV). However, neither agent completely eradicates inflammation. Two studies combining ruxolitinib with aIFNg report conflicting results with one demonstrating improvement and the other worsening of disease manifestations. As these studies used differing doses of drugs and varying LCMV strains, it remained unclear whether combination therapy is safe and effective. Methods: We previously showed that a ruxolitinib dose of 90 mg/kg lessens inflammation in Prf1-/- mice infected with LCMV-Armstrong. To determine whether this dose controls inflammation induced by a different LCMV strain, we administered ruxolitinib at 90mg/kg to Prf1-/- mice infected with LCMV-WE. To elucidate the impacts of single agent versus combination therapy, Prf1-/- animals were infected with LCMV, treated or not with ruxolitinib, aIFNg or both agents, and analyzed for disease features and the transcriptional impacts of therapy within purified CD8 T cells. Results: Ruxolitinib is well-tolerated and controls disease regardless of the viral strain used. aIFNg, administered alone or with ruxolitinib, is most effective at reversing anemia and reducing serum IFNg levels. In contrast, ruxolitinib appears better than aIFNg, and equally or more effective than combination therapy, at lessening immune cell expansion and cytokine production. Each treatment targets distinct gene expression pathways with aIFNg downregulating IFNg, IFNa, and IL-6-STAT3 pathways, and ruxolitinib downregulating IL-6-STAT3, glycolysis, and reactive oxygen species pathways. Unexpectedly, combination therapy is associated with upregulation of genes driving cell survival and proliferation. Conclusions: Ruxolitinib is tolerated and curtails inflammation regardless of the inciting viral strain and whether it is given alone or in combination with aIFNg. When administered at the doses used in this study, the combination of ruxolitinb and aIFNg appears no better than treatment with either drug alone in lessening inflammation. Further studies are warranted to elucidate the optimal doses, schedules, and combinations of these agents for the treatment of patients with pHLH.


Assuntos
Janus Quinases , Linfo-Histiocitose Hemofagocítica , Animais , Camundongos , Interferon gama/uso terapêutico , Linfo-Histiocitose Hemofagocítica/tratamento farmacológico , Linfo-Histiocitose Hemofagocítica/genética , Linfo-Histiocitose Hemofagocítica/patologia , Interleucina-6 , Vírus da Coriomeningite Linfocítica/fisiologia , Inflamação
5.
Front Immunol ; 12: 614704, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33664745

RESUMO

Hemophagocytic lymphohistiocytosis (HLH) is a rare hyperinflammatory syndrome driven by overactive T cells and macrophages that abundantly secrete numerous pro-inflammatory cytokines, including interferon (IFN)-gamma, interleukin (IL)-1-beta, IL-2, IL-6, IL-10, IL-18, and tumor necrosis factor (TNF). The release of these and other cytokines underlies many of the clinical and pathologic manifestations of HLH, which if left untreated, can lead to multi-organ failure and death. The advent of etoposide-based regimens, such as the Histiocyte Society HLH-94 and HLH-2004 protocols, has substantially decreased the mortality associated with HLH. Nevertheless, the 5-year survival remains low at ~60%. To improve upon these results, studies have focused on the use of novel cytokine-directed therapies to dampen inflammation in HLH. Among the agents being tested is ruxolitinib, a potent inhibitor of the Janus Kinase (JAK) and Signal Transducer and Activation of Transcription (STAT) pathway, which functions downstream of many HLH-associated cytokines. Here, we review the basic biology of HLH, including the role of cytokines in disease pathogenesis, and discuss the use of ruxolitinib in the treatment of HLH.


Assuntos
Inibidores de Janus Quinases/uso terapêutico , Linfo-Histiocitose Hemofagocítica/tratamento farmacológico , Terapia de Alvo Molecular , Pirazóis/uso terapêutico , Animais , Gerenciamento Clínico , Suscetibilidade a Doenças , Predisposição Genética para Doença , Humanos , Inibidores de Janus Quinases/farmacologia , Linfo-Histiocitose Hemofagocítica/diagnóstico , Linfo-Histiocitose Hemofagocítica/epidemiologia , Linfo-Histiocitose Hemofagocítica/etiologia , Nitrilas , Prognóstico , Pirazóis/farmacologia , Pirimidinas , Resultado do Tratamento
6.
Cancers (Basel) ; 12(8)2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32823919

RESUMO

Pancreatic cancer remains a recalcitrant neoplasm associated with chemoresistance and high fatality. Because it is frequently resistant to apoptosis, exploiting autophagic cell death could offer a new treatment approach. We repurpose echinomycin, an antibiotic encapsulated within a syndecan-1 actively targeted nanoparticle, for treatment of pancreatic cancer. Tumor-specific uptake, biodistribution, efficacy of nanodelivered echinomycin, and mechanism of cell death were assessed in aggressive, metastatic models of pancreatic cancer. In these autophagic-dependent pancreatic cancer models, echinomycin treatment resulted in autophagic cell death noted by high levels of LC3 among other autophagy markers, but without hallmarks of apoptosis, e.g., caspase activation and chromatin fragmentation, or necrosis, e.g., plasma membrane degradation and chromatin condensation/degrading. In vivo, biodistribution of syndecan-1-targeted nanoparticles indicated preferential S2VP10 or S2CP9 tumor uptake compared to the liver and kidney (S2VP10 p = 0.0016, p = 0.00004 and S2CP9 p = 0.0009, p = 0.0001). Actively targeted nanodelivered echinomycin resulted in significant survival increases compared to Gemzar (S2VP10 p = 0.0003, S2CP9 p = 0.0017) or echinomycin only (S2VP10 p = 0.0096, S2CP9 p = 0.0073). We demonstrate that actively targeted nanodelivery of echinomycin results in autophagic cell death in pancreatic and potentially other high-autophagy, apoptosis-resistant tumors. Collectively, these findings support syndecan-1-targeted delivery of echinomycin and dysregulation of autophagy to induce cell death in pancreatic cancer.

7.
Blood ; 136(6): 657-668, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32530039

RESUMO

Cytokine storm syndromes (CSS) are severe hyperinflammatory conditions characterized by excessive immune system activation leading to organ damage and death. Hemophagocytic lymphohistiocytosis (HLH), a disease often associated with inherited defects in cell-mediated cytotoxicity, serves as a prototypical CSS for which the 5-year survival is only 60%. Frontline therapy for HLH consists of the glucocorticoid dexamethasone (DEX) and the chemotherapeutic agent etoposide. Many patients, however, are refractory to this treatment or relapse after an initial response. Notably, many cytokines that are elevated in HLH activate the JAK/STAT pathway, and the JAK1/2 inhibitor ruxolitinib (RUX) has shown efficacy in murine HLH models and humans with refractory disease. We recently reported that cytokine-induced JAK/STAT signaling mediates DEX resistance in T cell acute lymphoblastic leukemia (T-ALL) cells, and that this could be effectively reversed by RUX. On the basis of these findings, we hypothesized that cytokine-mediated JAK/STAT signaling might similarly contribute to DEX resistance in HLH, and that RUX treatment would overcome this phenomenon. Using ex vivo assays, a murine model of HLH, and primary patient samples, we demonstrate that the hypercytokinemia of HLH reduces the apoptotic potential of CD8 T cells leading to relative DEX resistance. Upon exposure to RUX, this apoptotic potential is restored, thereby sensitizing CD8 T cells to DEX-induced apoptosis in vitro and significantly reducing tissue immunopathology and HLH disease manifestations in vivo. Our findings provide rationale for combining DEX and RUX to enhance the lymphotoxic effects of DEX and thus improve the outcomes for patients with HLH and related CSS.


Assuntos
Apoptose/efeitos dos fármacos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Síndrome da Liberação de Citocina/tratamento farmacológico , Dexametasona/uso terapêutico , Inibidores de Janus Quinases/uso terapêutico , Linfo-Histiocitose Hemofagocítica/tratamento farmacológico , Pirazóis/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Animais , Linfócitos T CD8-Positivos/imunologia , Síndrome da Liberação de Citocina/etiologia , Síndrome da Liberação de Citocina/fisiopatologia , Citocinas/fisiologia , Dexametasona/administração & dosagem , Dexametasona/farmacologia , Modelos Animais de Doenças , Resistência a Medicamentos/efeitos dos fármacos , Quimioterapia Combinada , Humanos , Interleucina-2/farmacologia , Inibidores de Janus Quinases/administração & dosagem , Inibidores de Janus Quinases/farmacologia , Janus Quinases , Coriomeningite Linfocítica/complicações , Coriomeningite Linfocítica/fisiopatologia , Linfo-Histiocitose Hemofagocítica/complicações , Linfo-Histiocitose Hemofagocítica/enzimologia , Linfo-Histiocitose Hemofagocítica/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Nitrilas , Perforina/deficiência , Pirazóis/administração & dosagem , Pirazóis/farmacologia , Pirimidinas , Fator de Transcrição STAT5/fisiologia , Organismos Livres de Patógenos Específicos
8.
J Clin Invest ; 130(4): 2081-2096, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31945018

RESUMO

Macrophages have been linked to tumor initiation, progression, metastasis, and treatment resistance. However, the transcriptional regulation of macrophages driving the protumor function remains elusive. Here, we demonstrate that the transcription factor c-Maf is a critical controller for immunosuppressive macrophage polarization and function in cancer. c-Maf controls many M2-related genes and has direct binding sites within a conserved noncoding sequence of the Csf-1r gene and promotes M2-like macrophage-mediated T cell suppression and tumor progression. c-Maf also serves as a metabolic checkpoint regulating the TCA cycle and UDP-GlcNAc biosynthesis, thus promoting M2-like macrophage polarization and activation. Additionally, c-Maf is highly expressed in tumor-associated macrophages (TAMs) and regulates TAM immunosuppressive function. Deletion of c-Maf specifically in myeloid cells results in reduced tumor burden with enhanced antitumor T cell immunity. Inhibition of c-Maf partly overcomes resistance to anti-PD-1 therapy in a subcutaneous LLC tumor model. Similarly, c-Maf is expressed in human M2 and tumor-infiltrating macrophages/monocytes as well as circulating monocytes of human non-small cell lung carcinoma (NSCLC) patients and critically regulates their immunosuppressive activity. The natural compound ß-glucan downregulates c-Maf expression on macrophages, leading to enhanced antitumor immunity in mice. These findings establish a paradigm for immunosuppressive macrophage polarization and transcriptional regulation by c-Maf and suggest that c-Maf is a potential target for effective tumor immunotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/imunologia , Imunidade Celular , Neoplasias Pulmonares/imunologia , Ativação de Macrófagos , Macrófagos/imunologia , Neoplasias Experimentais/imunologia , Proteínas Proto-Oncogênicas c-maf/imunologia , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Knockout , Monócitos/imunologia , Monócitos/patologia , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Proteínas Proto-Oncogênicas c-maf/genética , Linfócitos T/imunologia , Linfócitos T/patologia
9.
Am J Respir Crit Care Med ; 201(5): 526-539, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31710506

RESUMO

Rationale: IL-18 is a member of the IL-1 cytokine family, and elevated blood IL-18 concentrations associate with disease activity in macrophage activation syndrome (MAS) and poor clinical outcomes in severe inflammatory and septic conditions.Objectives: Although recent investigations provide mechanistic evidence for a contribution of IL-18 to inflammation and hyperinflammation in sepsis and MAS, we sought to study regulatory mechanisms underlying human IL-18 expression.Methods: Samples from in vivo and in vitro endotoxin rechallenge experiments, patients with inflammatory disease, and isolated human monocytes treated with various stimulants and drugs were tested for cytokine gene and protein expression. Serum IL-18 expression with or without JAK/STAT inhibition was analyzed in two MAS mouse models and in a patient with recurrent MAS.Measurements and Main Results: Peripheral blood and monocytic IL-18 expression escaped LPS-induced immunoparalysis. LPS-stimulated primary human monocytes revealed specific IL-18 expression kinetics controlled by IFNα/ß signaling. JAK/STAT inhibition or IFNß neutralization during LPS stimulation blunted cytokine expression. Similarly, microtubule-destabilizing drugs abrogated LPS-induced IL18 expression, but this effect could be fully reversed by addition of IFNα/ß. Ex vivo analysis of inflammatory disease patients' whole blood revealed strong correlation of type I IFN score and IL18 expression, whereas JAK/STAT inhibition strongly reduced IL-18 serum levels in two MAS mouse models and in a patient with recurrent MAS.Conclusions: Our data indicate that IL-18 (but not IL-1ß) production from human monocytes requires cooperative Toll-like receptor and IFNα/ß signaling. Interference with IFNα/ß expression or signaling following JAK/STAT inhibition may control catastrophic hyperinflammation in MAS.


Assuntos
Tolerância Imunológica/imunologia , Interferon-alfa/imunologia , Interferon beta/imunologia , Interleucina-18/imunologia , Síndrome de Ativação Macrofágica/imunologia , Receptores Toll-Like/imunologia , Adulto , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Modelos Animais de Doenças , Endotoxinas , Expressão Gênica , Humanos , Técnicas In Vitro , Interferon-alfa/efeitos dos fármacos , Interferon beta/efeitos dos fármacos , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Interleucina-18/genética , Interleucina-18/metabolismo , Interleucina-1beta/efeitos dos fármacos , Interleucina-1beta/imunologia , Inibidores de Janus Quinases/farmacologia , Lipopolissacarídeos/farmacologia , Síndrome de Ativação Macrofágica/genética , Síndrome de Ativação Macrofágica/metabolismo , Masculino , Camundongos , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Piperidinas/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Transdução de Sinais , Inibidores do Fator de Necrose Tumoral/farmacologia
10.
Adv Exp Med Biol ; 1161: 169-191, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31562630

RESUMO

Ceramides are bioactive sphingolipids that support the structure of the plasma membrane and mediate numerous cell-signaling events in eukaryotic cells. The finding that ceramides act as second messengers transducing cellular signals has attracted substantial attention in several fields of Biology. Since all cells contain lipid plasma membranes, the impact of various ceramides, ceramide synthases, ceramide metabolites, and other sphingolipids has been implicated in a vast range of cellular functions including, migration, proliferation, response to external stimuli, and death. The roles of lipids in these functions widely differ among the diverse cell types. Herein, we discuss the roles of ceramides and other sphingolipids in mediating the function of various immune cells; particularly dendritic cells, neutrophils, and macrophages. In addition, we highlight the main studies describing effects of ceramides in inflammation, specifically in various inflammatory settings including insulin resistance, graft-versus-host disease, immune suppression in cancer, multiple sclerosis, and inflammatory bowel disease.


Assuntos
Ceramidas , Inflamação , Esfingolipídeos , Ceramidas/imunologia , Ceramidas/metabolismo , Humanos , Inflamação/fisiopatologia , Sistemas do Segundo Mensageiro , Transdução de Sinais , Esfingolipídeos/imunologia
11.
Blood ; 134(2): 147-159, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31015190

RESUMO

Hemophagocytic lymphohistiocytosis (HLH) is an often-fatal disorder characterized by the overactivation of T cells and macrophages that excessively produce proinflammatory cytokines, including interferon-γ (IFN-γ). Previously, we reported that the JAK inhibitor ruxolitinib dampens T-cell activation and lessens inflammation in a model of HLH in which perforin-deficient (Prf1 -/-) mice are infected with lymphocytic choriomeningitis virus (LCMV). Ruxolitinib inhibits signaling downstream of IFN-γ, as well as several other JAK-dependent cytokines. As a consequence, it remained unclear whether ruxolitinib was exerting its beneficial effects in HLH by inhibiting IFN-γ signaling or by targeting signaling initiated by other proinflammatory cytokines. To address this question, we compared the effects of ruxolitinib with those obtained using an IFN-γ-neutralizing antibody (αIFN-γ) in 2 murine HLH models. In both models, ruxolitinib and αIFN-γ reduced inflammation-associated anemia, indicating that ruxolitinib operates in an IFN-γ-dependent manner to reverse this HLH manifestation. In contrast, the number and activation status of T cells and neutrophils, as well as their infiltration into tissues, were significantly reduced following treatment with ruxolitinib, but they remained unchanged or were increased following treatment with αIFN-γ. Notably, despite discontinuation of ruxolitinib, LCMV-infected Prf1 -/- mice exhibited enhanced survival compared with mice in which αIFN-γ was discontinued. This protective effect could be mimicked by transient treatment with αIFN-γ and a neutrophil-depleting antibody. Thus, ruxolitinib operates through IFN-γ-dependent and -independent mechanisms to dampen HLH by targeting the deleterious effects of T cells and neutrophils, with the latter representing an unappreciated and understudied cell type that contributes to HLH pathogenesis.


Assuntos
Linfo-Histiocitose Hemofagocítica/imunologia , Neutrófilos/efeitos dos fármacos , Pirazóis/farmacologia , Linfócitos T/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Nitrilas , Pirimidinas
12.
Front Immunol ; 10: 119, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30774631

RESUMO

Synonymous with secondary hemophagocytic lymphohistiocytosis, macrophage activation syndrome (MAS) is a term used by rheumatologists to describe a potentially life-threatening complication of systemic inflammatory disorders, most commonly systemic juvenile idiopathic arthritis (sJIA) and systemic lupus erythematosus (SLE). Clinical and laboratory features of MAS include sustained fever, hyperferritinemia, pancytopenia, fibrinolytic coagulopathy, and liver dysfunction. Soluble interleukin-2 receptor alpha chain (sCD25) and sCD163 may be elevated, and histopathology often reveals characteristic increased hemophagocytic activity in the bone marrow (and other tissues), with positive CD163 (histiocyte) staining. A common hypothesis as to the pathophysiology of many cases of MAS proposes a defect in lymphocyte cytolytic activity. Specific heterozygous gene mutations in familial HLH-associated cytolytic pathway genes (e.g., PRF1, UNC13D) have been linked to a substantial subset of MAS patients. In addition, the pro-inflammatory cytokine environment, particularly IL-6, has been shown to decrease NK cell cytolytic function. The inability of NK cells and cytolytic CD8 T cells to lyse infected and otherwise activated antigen presenting cells results in prolonged cell-to-cell (innate and adaptive immune cells) interactions and amplification of a pro-inflammatory cytokine cascade. The cytokine storm results in activation of macrophages, causing hemophagocytosis, as well as contributing to multi-organ dysfunction. In addition to macrophages, dendritic cells likely play a critical role in antigen presentation to cytolytic lymphocytes, as well as contributing to cytokine expression. Several cytokines, including tumor necrosis factor, interferon-gamma, and numerous interleukins (i.e., IL-1, IL-6, IL-18, IL-33), have been implicated in the cytokine cascade. In addition to broadly immunosuppressive therapies, novel cytokine targeted treatments are being explored to dampen the overly active immune response that is responsible for much of the pathology seen in MAS.


Assuntos
Síndrome de Ativação Macrofágica/imunologia , Animais , Citotoxicidade Imunológica , Células Dendríticas/imunologia , Humanos , Macrófagos/imunologia
14.
J Immunol ; 196(5): 2167-80, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26810222

RESUMO

Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of immature myeloid cells that promote tumor progression. In this study, we demonstrated that activation of a C-type lectin receptor, dectin-1, in MDSC differentially modulates the function of different MDSC subsets. Yeast-derived whole ß-glucan particles (WGP; a ligand to engage and activate dectin-1, oral treatment in vivo) significantly decreased tumor weight and splenomegaly in tumor-bearing mice with reduced accumulation of polymorphonuclear MDSC but not monocytic MDSC (M-MDSC), and decreased polymorphonuclear MDSC suppression in vitro through the induction of respiratory burst and apoptosis. On a different axis, WGP-treated M-MDSC differentiated into F4/80(+)CD11c(+) cells in vitro that served as potent APC to induce Ag-specific CD4(+) and CD8(+) T cell responses in a dectin-1-dependent manner. Additionally, Erk1/2 phosphorylation was required for the acquisition of APC properties in M-MDSC. Moreover, WGP-treated M-MDSC differentiated into CD11c(+) cells in vivo with high MHC class II expression and induced decreased tumor burden when inoculated s.c. with Lewis lung carcinoma cells. This effect was dependent on the dectin-1 receptor. Strikingly, patients with non-small cell lung carcinoma that had received WGP treatment for 10-14 d prior to any other treatment had a decreased frequency of CD14(-)HLA-DR(-)CD11b(+)CD33(+) MDSC in the peripheral blood. Overall, these data indicate that WGP may be a potent immune modulator of MDSC suppressive function and differentiation in cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Diferenciação Celular/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Monócitos/imunologia , Neutrófilos/imunologia , beta-Glucanas/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Células Apresentadoras de Antígenos/imunologia , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Western Blotting , Carcinoma Pulmonar de Lewis/imunologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Diferenciação Celular/imunologia , Separação Celular , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Humanos , Lectinas Tipo C/metabolismo , Neoplasias Pulmonares/imunologia , Teste de Cultura Mista de Linfócitos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Monócitos/citologia , Células Mieloides/citologia , Células Mieloides/imunologia , Neutrófilos/citologia , Reação em Cadeia da Polimerase em Tempo Real , Leveduras , beta-Glucanas/imunologia
15.
Cancer Immunol Res ; 4(2): 101-12, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26603621

RESUMO

Highly aggressive cancers "entrain" innate and adaptive immune cells to suppress antitumor lymphocyte responses. Circulating myeloid-derived suppressor cells (MDSC) constitute the bulk of monocytic immunosuppressive activity in late-stage melanoma patients. Previous studies revealed that monocyte-derived macrophage migration inhibitory factor (MIF) is necessary for the immunosuppressive function of tumor-associated macrophages and MDSCs in mouse models of melanoma. In the current study, we sought to determine whether MIF contributes to human melanoma MDSC induction and T-cell immunosuppression using melanoma patient-derived MDSCs and an ex vivo coculture model of human melanoma-induced MDSC. We now report that circulating MDSCs isolated from late-stage melanoma patients are reliant upon MIF for suppression of antigen-independent T-cell activation and that MIF is necessary for maximal reactive oxygen species generation in these cells. Moreover, inhibition of MIF results in a functional reversion from immunosuppressive MDSC to an immunostimulatory dendritic cell (DC)-like phenotype that is at least partly due to reductions in MDSC prostaglandin E(2) (PGE(2)). These findings indicate that monocyte-derived MIF is centrally involved in human monocytic MDSC induction/immunosuppressive function and that therapeutic targeting of MIF may provide a novel means of inducing antitumor DC responses in late-stage melanoma patients.


Assuntos
Fatores Inibidores da Migração de Macrófagos/metabolismo , Melanoma/imunologia , Melanoma/metabolismo , Células Mieloides/imunologia , Células Mieloides/metabolismo , Animais , Biomarcadores , Diferenciação Celular , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Imunofenotipagem , Masculino , Melanoma/patologia , Camundongos , Camundongos Transgênicos , Células Mieloides/patologia , Gradação de Tumores , Estadiamento de Neoplasias , Fenótipo , Espécies Reativas de Oxigênio/metabolismo
16.
J Immunol ; 195(10): 5055-65, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26453753

RESUMO

Tumor-associated macrophages (TAM) with an alternatively activated phenotype have been linked to tumor-elicited inflammation, immunosuppression, and resistance to chemotherapies in cancer, thus representing an attractive target for an effective cancer immunotherapy. In this study, we demonstrate that particulate yeast-derived ß-glucan, a natural polysaccharide compound, converts polarized alternatively activated macrophages or immunosuppressive TAM into a classically activated phenotype with potent immunostimulating activity. This process is associated with macrophage metabolic reprograming with enhanced glycolysis, Krebs cycle, and glutamine utilization. In addition, particulate ß-glucan converts immunosuppressive TAM via the C-type lectin receptor dectin-1-induced spleen tyrosine kinase-Card9-Erk pathway. Further in vivo studies show that oral particulate ß-glucan treatment significantly delays tumor growth, which is associated with in vivo TAM phenotype conversion and enhanced effector T cell activation. Mice injected with particulate ß-glucan-treated TAM mixed with tumor cells have significantly reduced tumor burden with less blood vascular vessels compared with those with TAM plus tumor cell injection. In addition, macrophage depletion significantly reduced the therapeutic efficacy of particulate ß-glucan in tumor-bearing mice. These findings have established a new paradigm for macrophage polarization and immunosuppressive TAM conversion and shed light on the action mode of ß-glucan treatment in cancer.


Assuntos
Polissacarídeos Fúngicos/farmacologia , Lectinas Tipo C/imunologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/imunologia , Neoplasias Experimentais/tratamento farmacológico , Saccharomyces cerevisiae/química , beta-Glucanas/farmacologia , Animais , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/imunologia , Linhagem Celular Tumoral , Polissacarídeos Fúngicos/química , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Neoplasias Experimentais/genética , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia , beta-Glucanas/química
17.
Cancer Res ; 74(21): 6271-9, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25217521

RESUMO

Detection of orthotopic xenograft tumors is difficult due to poor spatial resolution and reduced image fidelity with traditional optical imaging modalities. In particular, light scattering and attenuation in tissue at depths beyond subcutaneous implantation hinder adequate visualization. We evaluate the use of multispectral optoacoustic tomography (MSOT) to detect upregulated epidermal growth factor (EGF) receptor in orthotopic pancreatic xenografts using a near-infrared EGF-conjugated CF-750 fluorescent probe. MSOT is based on the photoacoustic effect and thus not limited by photon scattering, resulting in high-resolution tomographic images. Pancreatic tumor-bearing mice with luciferase-transduced S2VP10L tumors were intravenously injected with EGF-750 probe before MSOT imaging. We characterized probe specificity and bioactivity via immunoblotting, immunocytochemistry, and flow cytometric analysis. In vitro data along with optical bioluminescence/fluorescence imaging were used to validate acquired MSOT in vivo images of probe biodistribution. Indocyanine green dye was used as a nonspecific control to define specificity of EGF-probe accumulation. Maximum accumulation occurred at 6 hours postinjection, demonstrating specific intratumoral probe uptake and minimal liver and kidney off-target accumulation. Optical bioluminescence and fluorescence imaging confirmed tumor-specific probe accumulation consistent with MSOT images. These studies demonstrate the utility of MSOT to obtain volumetric images of ligand probe biodistribution in vivo to detect orthotopic pancreatic tumor lesions through active targeting of the EGF receptor.


Assuntos
Receptores ErbB/biossíntese , Neoplasias Pancreáticas/diagnóstico por imagem , Técnicas Fotoacústicas/métodos , Tomografia/métodos , Animais , Receptores ErbB/isolamento & purificação , Corantes Fluorescentes , Humanos , Camundongos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Radiografia , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Cancer J ; 19(6): 490-501, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24270348

RESUMO

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells with suppressive properties that preferentially expand in cancer. Myeloid-derived suppressor cells mainly suppress T-cell proliferation and cytotoxicity, inhibit natural killer cell activation, and induce the differentiation and expansion of regulatory T cells. The wide spectrum of MDSC suppressive activity in cancer and its role in tumor progression have rendered these cells a promising target for effective cancer immunotherapy. In this review we briefly discuss the origin of MDSCs and their main mechanisms of suppression and focus more on the approaches developed up to date targeting of MDSCs in tumor-bearing animals and cancer patients.


Assuntos
Imunossupressores/imunologia , Células Mieloides/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Animais , Diferenciação Celular/imunologia , Processos de Crescimento Celular/imunologia , Humanos , Imunoterapia/métodos , Células Mieloides/citologia , Células Mieloides/patologia , Neoplasias/patologia
19.
Anticancer Agents Med Chem ; 13(5): 689-98, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23092290

RESUMO

ß-Glucans are polysaccharides of ß-D-glucose extracted from the cell walls of different species of mushrooms, yeast, oat, barley, seaweeds, algae and bacteria. Modern biomedical research has identified ß-glucans as biological response modifiers (BRM) with anti-tumor properties that elicit potent immune responses through their recognition by a variety of pattern recognition receptors (PRRs) on dendritic cells (DCs), macrophages and neutrophils. Complement receptor-3 (CR3), lactosylceramides, scavenger receptors and dectin-1 are involved in ß-glucan recognition, triggering a series of signaling events that modulate innate and subsequently adaptive immune responses. ß-Glucan binding to specific receptors in DCs and macrophages triggers their activation and maturation, increases their antigen-presentation ability and enhances the production of proinflammatory cytokines that stimulate the polarization of TH1 or TH17 responses, and induces the activation of antigen-specific CD8+ cytotoxic T lymphocytes (CTL). Moreover, large ß-glucans can be degraded by macrophages into smaller moieties, when released, prime CR3 receptor on neutrophils and natural killer (NK) cells mediating CR3-dependent cellular cytotoxicity (CR3-DCC) of iC3b opsonized tumor cells. Elucidating the molecular mechanisms of ß- glucan-induced signaling in immune cells is essential for the design of new therapeutic strategies against cancer. Future studies should be done to translate ß-glucan research to the clinic.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Células Dendríticas/efeitos dos fármacos , Neoplasias/tratamento farmacológico , beta-Glucanas/uso terapêutico , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Células Dendríticas/imunologia , Humanos , Neoplasias/imunologia , beta-Glucanas/química , beta-Glucanas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA