Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 59(47): 4507-4515, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33182997

RESUMO

Terpenes make up the largest class of natural products, with extensive chemical and structural diversity. Diterpenes, mostly isolated from plants and rarely prokaryotes, exhibit a variety of important biological activities and valuable applications, including providing antitumor and antibiotic pharmaceuticals. These natural products are constructed by terpene synthases, a class of enzymes that catalyze one of the most complex chemical reactions in biology: converting simple acyclic oligo-isoprenyl diphosphate substrates to complex polycyclic products via carbocation intermediates. Here we obtained the second ever crystal structure of a class II diterpene synthase from bacteria, tuberculosinol pyrophosphate synthase (i.e., Halimadienyl diphosphate synthase, MtHPS, or Rv3377c) from Mycobacterium tuberculosis (Mtb). This enzyme transforms (E,E,E)-geranylgeranyl diphosphate into tuberculosinol pyrophosphate (Halimadienyl diphosphate). Rv3377c is part of the Mtb diterpene pathway along with Rv3378c, which converts tuberculosinol pyrophosphate to 1-tuberculosinyl adenosine (1-TbAd). This pathway was shown to exist only in virulent Mycobacterium species, but not in closely related avirulent species, and was proposed to be involved in phagolysosome maturation arrest. To gain further insight into the reaction pathway and the mechanistically relevant enzyme substrate binding orientation, electronic structure calculation and docking studies of reaction intermediates were carried out. Results reveal a plausible binding mode of the substrate that can provide the information to guide future drug design and anti-infective therapies of this biosynthetic pathway.


Assuntos
Alquil e Aril Transferases/química , Diterpenos/metabolismo , Modelos Moleculares , Mycobacterium tuberculosis/enzimologia , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Ciclização/genética , Diterpenos/química , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/genética
2.
Structure ; 26(7): 972-986.e6, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29861345

RESUMO

The Mycobacterium tuberculosis ATP-binding cassette transporter Rv1747 is a putative exporter of cell wall biosynthesis intermediates. Rv1747 has a cytoplasmic regulatory module consisting of two pThr-interacting Forkhead-associated (FHA) domains connected by a conformationally disordered linker with two phospho-acceptor threonines (pThr). The structures of FHA-1 and FHA-2 were determined by X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy, respectively. Relative to the canonical 11-strand ß-sandwich FHA domain fold of FHA-1, FHA-2 is circularly permuted and lacking one ß-strand. Nevertheless, the two share a conserved pThr-binding cleft. FHA-2 is less stable and more dynamic than FHA-1, yet binds model pThr peptides with moderately higher affinity (∼50 µM versus 500 µM equilibrium dissociation constants). Based on NMR relaxation and chemical shift perturbation measurements, when joined within a polypeptide chain, either FHA domain can bind either linker pThr to form intra- and intermolecular complexes. We hypothesize that this enables tunable phosphorylation-dependent multimerization to regulate Rv1747 transporter activity.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Mycobacterium tuberculosis/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Citoplasma/metabolismo , Modelos Moleculares , Mycobacterium tuberculosis/química , Ressonância Magnética Nuclear Biomolecular , Fosfotreonina/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína
3.
Proc Natl Acad Sci U S A ; 111(8): 2978-83, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24516143

RESUMO

To identify lipids with roles in tuberculosis disease, we systematically compared the lipid content of virulent Mycobacterium tuberculosis with the attenuated vaccine strain Mycobacterium bovis bacillus Calmette-Guérin. Comparative lipidomics analysis identified more than 1,000 molecular differences, including a previously unknown, Mycobacterium tuberculosis-specific lipid that is composed of a diterpene unit linked to adenosine. We established the complete structure of the natural product as 1-tuberculosinyladenosine (1-TbAd) using mass spectrometry and NMR spectroscopy. A screen for 1-TbAd mutants, complementation studies, and gene transfer identified Rv3378c as necessary for 1-TbAd biosynthesis. Whereas Rv3378c was previously thought to function as a phosphatase, these studies establish its role as a tuberculosinyl transferase and suggest a revised biosynthetic pathway for the sequential action of Rv3377c-Rv3378c. In agreement with this model, recombinant Rv3378c protein produced 1-TbAd, and its crystal structure revealed a cis-prenyl transferase fold with hydrophobic residues for isoprenoid binding and a second binding pocket suitable for the nucleoside substrate. The dual-substrate pocket distinguishes Rv3378c from classical cis-prenyl transferases, providing a unique model for the prenylation of diverse metabolites. Terpene nucleosides are rare in nature, and 1-TbAd is known only in Mycobacterium tuberculosis. Thus, this intersection of nucleoside and terpene pathways likely arose late in the evolution of the Mycobacterium tuberculosis complex; 1-TbAd serves as an abundant chemical marker of Mycobacterium tuberculosis, and the extracellular export of this amphipathic molecule likely accounts for the known virulence-promoting effects of the Rv3378c enzyme.


Assuntos
Alquil e Aril Transferases/química , Alquil e Aril Transferases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Lipídeos/biossíntese , Modelos Moleculares , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/patogenicidade , Conformação Proteica , Alquil e Aril Transferases/genética , Proteínas de Bactérias/genética , Cromatografia por Troca Iônica , Dimerização , Lipídeos/química , Lipídeos/genética , Espectrometria de Massas , Estrutura Molecular , Virulência
4.
Mol Cell ; 49(4): 743-50, 2013 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-23317505

RESUMO

Interferon-induced proteins, including the largely uncharacterized interferon-induced tetratricopeptide repeat (IFIT) protein family, provide defenses against pathogens. Differing from expectations for tetratricopeptide repeat (TPR) proteins and from human IFIT1, IFIT2, and IFIT3, we show that human IFIT5 recognizes cellular RNA instead of protein partners. In vivo and in vitro, IFIT5 bound to endogenous 5'-phosphate-capped RNAs, including transfer RNAs. The crystal structure of IFIT5 revealed a convoluted intramolecular packing of eight TPRs as a fold that we name the TPR eddy. Additional, non-TPR structural elements contribute to an RNA binding cleft. Instead of general cytoplasmic distribution, IFIT5 concentrated in actin-rich protrusions from the apical cell surface colocalized with the RNA-binding retinoic acid-inducible gene-I (RIG-I). These findings establish compartmentalized cellular RNA binding activity as a mechanism for IFIT5 function and reveal the TPR eddy as a scaffold for RNA recognition.


Assuntos
Proteínas de Neoplasias/metabolismo , RNA de Transferência de Metionina/metabolismo , Actinas/metabolismo , Substituição de Aminoácidos , Animais , Cristalografia por Raios X , Proteína DEAD-box 58 , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/isolamento & purificação , RNA Helicases DEAD-box/metabolismo , Células HEK293 , Humanos , Camundongos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas de Neoplasias/química , Proteínas de Neoplasias/isolamento & purificação , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , RNA de Transferência de Metionina/química , Receptores Imunológicos
5.
PLoS One ; 7(11): e49048, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23145064

RESUMO

Gram-positive bacteria assemble pili through class C sortase enzymes specialized in polymerizing pilin subunits into covalently linked, high-molecular-weight, elongated structures. Here we report the crystal structures of two class C sortases (SrtC1 and SrtC2) from Group B Streptococcus (GBS) Pilus Island 1. The structures show that both sortases are comprised of two domains: an 8-stranded ß-barrel catalytic core conserved among all sortase family members and a flexible N-terminal region made of two α-helices followed by a loop, known as the lid, which acts as a pseudo-substrate. In vitro experiments performed with recombinant SrtC enzymes lacking the N-terminal portion demonstrate that this region of the enzyme is dispensable for catalysis but may have key roles in substrate specificity and regulation. Moreover, in vitro FRET-based assays show that the LPXTG motif common to many sortase substrates is not the sole determinant of sortase C specificity during pilin protein recognition.


Assuntos
Aminoaciltransferases/química , Proteínas de Bactérias/química , Cisteína Endopeptidases/química , Proteínas de Fímbrias/química , Fímbrias Bacterianas/química , Streptococcus/enzimologia , Catálise , Domínio Catalítico , Cristalografia por Raios X/métodos , Modelos Moleculares , Dobramento de Proteína , Estrutura Terciária de Proteína , Streptococcus/química , Especificidade por Substrato
6.
Nat Struct Mol Biol ; 19(8): 811-8, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22773105

RESUMO

Protein lysine acetylation networks can regulate central processes such as carbon metabolism and gene expression in bacteria. In Escherichia coli, cyclic AMP (cAMP) regulates protein lysine acetyltransferase (PAT) activity at the transcriptional level, but in Mycobacterium tuberculosis, fusion of a cyclic nucleotide-binding domain to a Gcn5-like PAT domain enables direct cAMP control of protein acetylation. Here we describe the allosteric activation mechanism of M. tuberculosis PAT. The crystal structures of the autoinhibited and cAMP-activated PAT reveal that cAMP binds to a cryptic site in the regulatory domain that is over 32 Å from the catalytic site. An extensive conformational rearrangement relieves this autoinhibition by means of a substrate-mimicking lid that covers the protein-substrate binding surface. A steric double latch couples the domains by harnessing a classic, cAMP-mediated conformational switch. The structures suggest general features that enable the evolution of long-range communication between linked domains.


Assuntos
Acetiltransferases/química , Acetiltransferases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , AMP Cíclico/metabolismo , Mycobacterium tuberculosis/metabolismo , Acetilação , Acetiltransferases/genética , Proteínas de Bactérias/genética , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Ligantes , Lisina/química , Lisina/metabolismo , Modelos Moleculares , Mutagênese , Mycobacterium tuberculosis/genética , Conformação Proteica , Estrutura Terciária de Proteína
7.
PLoS One ; 7(2): e32498, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22393408

RESUMO

Structural biology and structural genomics projects routinely rely on recombinantly expressed proteins, but many proteins and complexes are difficult to obtain by this approach. We investigated native source proteins for high-throughput protein crystallography applications. The Escherichia coli proteome was fractionated, purified, crystallized, and structurally characterized. Macro-scale fermentation and fractionation were used to subdivide the soluble proteome into 408 unique fractions of which 295 fractions yielded crystals in microfluidic crystallization chips. Of the 295 crystals, 152 were selected for optimization, diffraction screening, and data collection. Twenty-three structures were determined, four of which were novel. This study demonstrates the utility of native source proteins for high-throughput crystallography.


Assuntos
Proteínas/química , Proteômica/métodos , Oxirredutases do Álcool/química , Proteínas de Bactérias/química , Cristalização , Escherichia coli/metabolismo , Fermentação , Genes Bacterianos , Glucose-6-Fosfato Isomerase/química , Glucosidases/química , Glutamato Desidrogenase/química , Espectrometria de Massas/métodos , Conformação Molecular , Proteoma
8.
Nature ; 481(7381): 365-70, 2011 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-22190034

RESUMO

Human immunodeficiency virus (HIV) has a small genome and therefore relies heavily on the host cellular machinery to replicate. Identifying which host proteins and complexes come into physical contact with the viral proteins is crucial for a comprehensive understanding of how HIV rewires the host's cellular machinery during the course of infection. Here we report the use of affinity tagging and purification mass spectrometry to determine systematically the physical interactions of all 18 HIV-1 proteins and polyproteins with host proteins in two different human cell lines (HEK293 and Jurkat). Using a quantitative scoring system that we call MiST, we identified with high confidence 497 HIV-human protein-protein interactions involving 435 individual human proteins, with ∼40% of the interactions being identified in both cell types. We found that the host proteins hijacked by HIV, especially those found interacting in both cell types, are highly conserved across primates. We uncovered a number of host complexes targeted by viral proteins, including the finding that HIV protease cleaves eIF3d, a subunit of eukaryotic translation initiation factor 3. This host protein is one of eleven identified in this analysis that act to inhibit HIV replication. This data set facilitates a more comprehensive and detailed understanding of how the host machinery is manipulated during the course of HIV infection.


Assuntos
HIV-1/química , HIV-1/metabolismo , Interações Hospedeiro-Patógeno , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas/fisiologia , Marcadores de Afinidade , Sequência de Aminoácidos , Sequência Conservada , Fator de Iniciação 3 em Eucariotos/química , Fator de Iniciação 3 em Eucariotos/metabolismo , Células HEK293 , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Protease de HIV/metabolismo , HIV-1/fisiologia , Proteínas do Vírus da Imunodeficiência Humana/análise , Proteínas do Vírus da Imunodeficiência Humana/química , Proteínas do Vírus da Imunodeficiência Humana/isolamento & purificação , Humanos , Imunoprecipitação , Células Jurkat , Espectrometria de Massas , Ligação Proteica , Reprodutibilidade dos Testes , Replicação Viral
9.
Proc Natl Acad Sci U S A ; 108(36): E636-45, 2011 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-21873227

RESUMO

The Super Elongation Complex (SEC), containing transcription elongation activators/coactivators P-TEFb, ELL2, AFF4/1, ENL, and AF9, is recruited by HIV-1 Tat and mixed lineage leukemia (MLL) proteins to activate the expression of HIV-1 and MLL-target genes, respectively. In the absence of Tat and MLL, however, it is unclear how SEC is targeted to RNA polymerase (Pol) II to stimulate elongation in general. Furthermore, although ENL and AF9 can bind the H3K79 methyltransferase Dot1L, it is unclear whether these bindings are required for SEC-mediated transcription. Here, we show that the homologous ENL and AF9 exist in separate SECs with similar but nonidentical functions. ENL/AF9 contacts the scaffolding protein AFF4 that uses separate domains to recruit different subunits into SEC. ENL/AF9 also exists outside SEC when bound to Dot1L, which is found to inhibit SEC function. The YEATS domain of ENL/AF9 targets SEC to Pol II on chromatin through contacting the human Polymerase-Associated Factor complex (PAFc) complex. This finding explains the YEATS domain's dispensability for leukemogenesis when ENL/AF9 is translocated to MLL, whose interactions with PAFc and DNA likely substitute for the PAFc/chromatin-targeting function of the YEATS domain.


Assuntos
Cromatina/metabolismo , Complexos Multiproteicos/metabolismo , RNA Polimerase II/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Cromatina/genética , Regulação Viral da Expressão Gênica/fisiologia , HIV-1/genética , HIV-1/metabolismo , Células HeLa , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Complexos Multiproteicos/genética , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Estrutura Terciária de Proteína , RNA Polimerase II/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Elongação da Transcrição/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
10.
Protein Sci ; 16(10): 2224-32, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17766380

RESUMO

The previous design of an unprecedented family of two-, three-, and four-helical, right-handed coiled coils utilized nonbiological amino acids to efficiently pack spaces in the oligomer cores. Here we show that a stable, right-handed parallel tetrameric coiled coil, called RH4B, can be designed entirely using biological amino acids. The X-ray crystal structure of RH4B was determined to 1.1 Angstrom resolution using a designed metal binding site to coordinate a single Yb(2+) ion per 33-amino acid polypeptide chain. The resulting experimental phases were particularly accurate, and the experimental electron density map provided an especially clear, unbiased view of the molecule. The RH4B structure closely matched the design, with equivalent core rotamers and an overall root-mean-square deviation for the N-terminal repeat of the tetramer of 0.24 Angstrom. The clarity and resolution of the electron density map, however, revealed alternate rotamers and structural differences between the three sequence repeats in the molecule. These results suggest that the RH4B structure populates an unanticipated variety of structures.


Assuntos
Peptídeos/química , Proteínas/química , Sequência de Aminoácidos , Aminoácidos/química , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Engenharia de Proteínas , Estrutura Secundária de Proteína , Sequências Repetitivas de Aminoácidos
11.
Nat Struct Biol ; 10(3): 168-74, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12548283

RESUMO

A family of eukaryotic-like Ser/Thr protein kinases occurs in bacteria, but little is known about the structures and functions of these proteins. Here we characterize PknB, a transmembrane signaling kinase from Mycobacterium tuberculosis. The intracellular PknB kinase domain is active autonomously, and the active enzyme is phosphorylated on residues homologous to regulatory phospho-acceptors in eukaryotic Ser/Thr kinases. The crystal structure of the PknB kinase domain in complex with an ATP analog reveals the active conformation. The predicted fold of the PknB extracellular domain matches the proposed targeting domain of penicillin-binding protein 2x. The structural and chemical similarities of PknB to metazoan homologs support a universal activation mechanism of Ser/Thr protein kinases in prokaryotes and eukaryotes.


Assuntos
Proteínas de Bactérias/química , Mycobacterium tuberculosis/enzimologia , Proteínas de Ligação às Penicilinas , Proteína Quinase C/química , Proteínas Serina-Treonina Quinases/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/química , Sequência Conservada , Cristalografia por Raios X , Ativação Enzimática/fisiologia , Células Eucarióticas/enzimologia , Matriz Extracelular/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Fosforilação , Conformação Proteica , Proteína Quinase C/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Homologia Estrutural de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA