Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 9(2): 414-22, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24274083

RESUMO

Every year three million people die as a result of bacterial infections, and this number may further increase due to resistance to current antibiotics. These antibiotics target almost all essential bacterial processes, leaving only a few new targets for manipulation. The host proteome has many more potential targets for manipulation in order to control bacterial infection, as exemplified by the observation that inhibiting the host kinase Akt supports the elimination of different intracellular bacteria including Salmonella and M. tuberculosis. If host kinases are involved in the control of bacterial infections, phosphatases could be as well. Here we present an integrated small interference RNA and small molecule screen to identify host phosphatase-inhibitor combinations that control bacterial infection. We define host phosphatases inhibiting intracellular growth of Salmonella and identify corresponding inhibitors for the dual specificity phosphatases DUSP11 and 27. Pathway analysis places many kinases and phosphatases controlling bacterial infection in an integrated pathway centered around Akt. This network controls host cell metabolism, survival, and growth and bacterial survival and reflect a natural host cell response to bacterial infection. Inhibiting two enzyme classes with opposite activities-kinases and phosphatases-may be a new strategy to overcome infections by antibiotic-resistant bacteria.


Assuntos
Fosfatases de Especificidade Dupla/antagonistas & inibidores , Interações Hospedeiro-Patógeno , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Infecções por Salmonella/tratamento farmacológico , Infecções por Salmonella/enzimologia , Salmonella typhimurium/fisiologia , Antibacterianos/química , Antibacterianos/farmacologia , Linhagem Celular , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inativação Gênica , Humanos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Infecções por Salmonella/genética , Salmonella typhimurium/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
2.
Arthritis Rheum ; 65(8): 2037-47, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23666827

RESUMO

OBJECTIVE: Lysophosphatidic acid (LPA) is a bioactive lipid that binds to a group of cell surface G protein-coupled receptors (LPA receptors 1-6 [LPA1-6 ]) and has been implicated as an important mediator of angiogenesis, inflammation, and cancer growth. This study was undertaken to analyze the effects of LPA1 on the development of arthritis. METHODS: Expression of LPA receptors on synovial tissue was analyzed by immunohistochemistry and quantitative reverse transcription-polymerase chain reaction. The effects of abrogation of LPA1 on collagen-induced arthritis (CIA) were evaluated using LPA1 -deficient mice or LPA1 antagonist. Migrating fluorescence-labeled CD11b+ splenocytes, which were transferred into the synovium of mice with CIA, were counted. CD4+ naive T cells were incubated under Th1-, Th2-, or Th17-polarizing conditions, and T helper cell differentiation was assessed. Osteoclast formation from bone marrow cells was examined. RESULTS: LPA1 was highly expressed in the synovium of patients with rheumatoid arthritis (RA) compared with that of patients with osteoarthritis. LPA1 -deficient mice did not develop arthritis following immunization with type II collagen (CII). LPA1 antagonist also ameliorated murine CIA. Abrogation of LPA1 was associated with reductions in cell infiltration, bone destruction in the joints, and interleukin-17 production from CII-stimulated splenocytes. Infiltration of transferred CD11b+ macrophages from LPA1 -deficient mice into the synovium was suppressed compared with infiltration of macrophages from wild-type mice. LPA1 antagonist inhibited the infiltration of macrophages from wild-type mice. Differentiation into Th17, but not Th1 or Th2, and osteoclast formation were also suppressed under conditions of LPA1 deficiency or LPA1 inhibition in vitro. CONCLUSION: Collectively, these results indicate that LPA/LPA1 signaling contributes to the development of arthritis via cellular infiltration, Th17 differentiation, and osteoclastogenesis. Thus, LPA1 may be a promising target molecule for RA therapy.


Assuntos
Artrite Experimental/metabolismo , Artrite Reumatoide/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Membrana Sinovial/metabolismo , Idoso , Animais , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Antígeno CD11b , Diferenciação Celular , Transplante de Células , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Terapia de Alvo Molecular , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteoclastos/metabolismo , Osteoclastos/patologia , Receptores de Ácidos Lisofosfatídicos/antagonistas & inibidores , Receptores de Ácidos Lisofosfatídicos/deficiência , Transdução de Sinais , Baço/metabolismo , Baço/patologia , Membrana Sinovial/patologia , Células Th17
3.
J Med Chem ; 54(13): 4619-26, 2011 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-21615078

RESUMO

Autotaxin (ATX) is a secreted phosphodiesterase that hydrolyzes the abundant phospholipid lysophosphatidylcholine (LPC) to produce lysophosphatidic acid (LPA). The ATX-LPA signaling axis has been implicated in inflammation, fibrosis, and tumor progression, rendering ATX an attractive drug target. We recently described a boronic acid-based inhibitor of ATX, named HA155 (1). Here, we report the design of new inhibitors based on the crystal structure of ATX in complex with inhibitor 1. Furthermore, we describe the syntheses and activities of these new inhibitors, whose potencies can be explained by structural data. To understand the difference in activity between two different isomers with nanomolar potencies, we performed molecular docking experiments. Intriguingly, molecular docking suggested a remarkable binding pose for one of the isomers, which differs from the original binding pose of inhibitor 1 for ATX, opening further options for inhibitor design.


Assuntos
Ácidos Borônicos/síntese química , Pirofosfatases/antagonistas & inibidores , Animais , Sítios de Ligação , Ácidos Borônicos/química , Ácidos Borônicos/farmacologia , Desenho de Fármacos , Modelos Moleculares , Diester Fosfórico Hidrolases/química , Pirofosfatases/química , Ratos , Estereoisomerismo , Relação Estrutura-Atividade
4.
Nat Struct Mol Biol ; 18(2): 198-204, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21240271

RESUMO

Autotaxin (ATX, also known as ectonucleotide pyrophosphatase/phosphodiesterase-2, ENPP2) is a secreted lysophospholipase D that generates the lipid mediator lysophosphatidic acid (LPA), a mitogen and chemoattractant for many cell types. ATX-LPA signaling is involved in various pathologies including tumor progression and inflammation. However, the molecular basis of substrate recognition and catalysis by ATX and the mechanism by which it interacts with target cells are unclear. Here, we present the crystal structure of ATX, alone and in complex with a small-molecule inhibitor. We have identified a hydrophobic lipid-binding pocket and mapped key residues for catalysis and selection between nucleotide and phospholipid substrates. We have shown that ATX interacts with cell-surface integrins through its N-terminal somatomedin B-like domains, using an atypical mechanism. Our results define determinants of substrate discrimination by the ENPP family, suggest how ATX promotes localized LPA signaling and suggest new approaches for targeting ATX with small-molecule therapeutic agents.


Assuntos
Integrinas/metabolismo , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/metabolismo , Pirofosfatases/química , Pirofosfatases/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Domínio Catalítico , Linhagem Celular , Cristalografia por Raios X , Humanos , Lisofosfolipídeos/metabolismo , Dados de Sequência Molecular , Mutação , Diester Fosfórico Hidrolases/genética , Ligação Proteica , Estrutura Terciária de Proteína , Pirofosfatases/genética , Ratos , Especificidade por Substrato
5.
Chembiochem ; 11(16): 2311-7, 2010 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-20941725

RESUMO

Autotaxin (ATX), or ecto-nucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2), is a secreted lysophospholipase D that hydrolyses lysophosphatidylcholine into the lipid mediator lysophosphatidic acid (LPA), a mitogen and chemoattractant for many cell types. ATX has been implicated in tumour progression and inflammation, and might serve as a biomarker. Here we describe the development of a fluorescent activity-based probe that covalently binds to the active site of ATX. The probe consists of a lysophospholipid-based backbone linked to a trapping moiety that becomes reactive after phosphate ester hydrolysis, and a Cy5 fluorescent dye to allow visualisation of active ATX. The probe reacts specifically with the three known isoforms of ATX, it competes with small-molecule inhibitors for binding to ATX and allows ATX activity in plasma to be determined. Our activity-based reporter will be useful for monitoring ATX activity in biological fluids and for inhibitor screening.


Assuntos
Inibidores Enzimáticos/química , Corantes Fluorescentes/química , Complexos Multienzimáticos/metabolismo , Fosfodiesterase I/metabolismo , Pirofosfatases/metabolismo , Domínio Catalítico , Inibidores Enzimáticos/síntese química , Corantes Fluorescentes/síntese química , Humanos , Complexos Multienzimáticos/antagonistas & inibidores , Complexos Multienzimáticos/genética , Fosfodiesterase I/antagonistas & inibidores , Fosfodiesterase I/genética , Diester Fosfórico Hidrolases , Ligação Proteica , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Pirofosfatases/antagonistas & inibidores , Pirofosfatases/genética , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
6.
J Med Chem ; 53(13): 4958-67, 2010 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-20536182

RESUMO

Autotaxin (ATX) is an extracellular enzyme that hydrolyzes lysophosphatidylcholine (LPC) to produce the lipid mediator lysophosphatidic acid (LPA). The ATX-LPA signaling axis has been implicated in diverse physiological and pathological processes, including vascular development, inflammation, fibrotic disease, and tumor progression. Therefore, targeting ATX with small molecule inhibitors is an attractive therapeutic strategy. We recently reported that 2,4-thiazolidinediones inhibit ATX activity in the micromolar range. Interestingly, inhibitory potency was dramatically increased by introduction of a boronic acid moiety, designed to target the active site threonine in ATX. Here we report on the discovery and further optimization of boronic acid based ATX inhibitors. The most potent of these compounds inhibits ATX-mediated LPC hydrolysis in the nanomolar range (IC(50) = 6 nM). The finding that ATX can be targeted by boronic acids may aid the development of ATX inhibitors for therapeutic use.


Assuntos
Ácidos Borônicos/síntese química , Ácidos Borônicos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Complexos Multienzimáticos/antagonistas & inibidores , Fosfodiesterase I/antagonistas & inibidores , Pirofosfatases/antagonistas & inibidores , Ácidos Borônicos/química , Ácidos Borônicos/metabolismo , Linhagem Celular , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Humanos , Concentração Inibidora 50 , Lisofosfatidilcolinas/metabolismo , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Complexos Multienzimáticos/metabolismo , Fosfodiesterase I/metabolismo , Diester Fosfórico Hidrolases , Pirofosfatases/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade , Tiazolidinedionas/síntese química , Tiazolidinedionas/química , Tiazolidinedionas/metabolismo , Tiazolidinedionas/farmacologia
7.
Proc Natl Acad Sci U S A ; 107(16): 7257-62, 2010 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-20360563

RESUMO

Autotaxin (ATX) is a secreted nucleotide pyrophosphatase/phosphodiesterase that functions as a lysophospholipase D to produce the lipid mediator lysophosphatidic acid (LPA), a mitogen, chemoattractant, and survival factor for many cell types. The ATX-LPA signaling axis has been implicated in angiogenesis, chronic inflammation, fibrotic diseases and tumor progression, making this system an attractive target for therapy. However, potent and selective nonlipid inhibitors of ATX are currently not available. By screening a chemical library, we have identified thiazolidinediones that selectively inhibit ATX-mediated LPA production both in vitro and in vivo. Inhibitor potency was approximately 100-fold increased (IC(50) approximately 30 nM) after the incorporation of a boronic acid moiety, designed to target the active-site threonine (T210) in ATX. Intravenous injection of this inhibitor into mice resulted in a surprisingly rapid decrease in plasma LPA levels, indicating that turnover of LPA in the circulation is much more dynamic than previously appreciated. Thus, boronic acid-based small molecules hold promise as candidate drugs to target ATX.


Assuntos
Ácidos Borônicos/metabolismo , Lisofosfolipídeos/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Glicoproteínas/química , Humanos , Concentração Inibidora 50 , Lipídeos/química , Masculino , Camundongos , Complexos Multienzimáticos/metabolismo , Fosfodiesterase I/metabolismo , Diester Fosfórico Hidrolases/química , Pirofosfatases/metabolismo , Transdução de Sinais , Tiazolidinedionas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA