Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38892382

RESUMO

Calcium calmodulin-dependent protein kinase (CaMK) mediates calcium-induced neural gene activation. CaMK also inhibits the non-syndromic intellectual disability gene, Freud-1/CC2D1A, a transcriptional repressor of human serotonin-1A (5-HT1A) and dopamine-D2 receptor genes. The altered expression of these Freud-1-regulated genes is implicated in mental illnesses such as major depression and schizophrenia. We hypothesized that Freud-1 is blocked by CaMK-induced phosphorylation. The incubation of purified Freud-1 with either CaMKIIα or CaMKIV increased Freud-1 phosphorylation that was partly prevented in Freud-1-Ser644Ala and Freud-1-Thr780Ala CaMK site mutants. In human SK-N-SH neuroblastoma cells, active CaMKIV induced the serine and threonine phosphorylation of Freud-1, and specifically increased Freud-1-Thr780 phosphorylation in transfected HEK-293 cells. The activation of purified CaMKIIα or CaMKIV reduced Freud-1 binding to its DNA element on the 5-HT1A and dopamine-D2 receptor genes. In SK-N-SH cells, active CaMKIV but not CaMKIIα blocked the Freud-1 repressor activity, while Freud-1 Ser644Ala, Thr780Ala or dual mutants were resistant to inhibition by activated CaMKIV or calcium mobilization. These results indicate that the Freud-1 repressor activity is blocked by CaMKIV-induced phosphorylation at Thr780, resulting in the up-regulation of the target genes, such as the 5-HT1A receptor gene. The CaMKIV-mediated inhibition of Freud-1 provides a novel de-repression mechanism to induce 5-HT1A receptor expression for the regulation of cognitive development, behavior and antidepressant response.


Assuntos
Cálcio , Receptor 5-HT1A de Serotonina , Humanos , Fosforilação , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT1A de Serotonina/genética , Células HEK293 , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina/genética , Linhagem Celular Tumoral , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Regulação da Expressão Gênica , Proteínas de Ligação a DNA
2.
Int J Mol Sci ; 24(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37958600

RESUMO

Serotonin 1A (5-HT1A) autoreceptors located on serotonin neurons inhibit their activity, and their upregulation has been implicated in depression, suicide and resistance to antidepressant treatment. Conversely, post-synaptic 5-HT1A heteroreceptors are important for antidepressant response. The transcription factor deformed epidermal autoregulatory factor 1 (Deaf1) acts as a presynaptic repressor and postsynaptic enhancer of 5-HT1A transcription, but the mechanism is unclear. Because Deaf1 interacts with and is phosphorylated by glycogen synthase kinase 3ß (GSK3ß)-a constitutively active protein kinase that is inhibited by the mood stabilizer lithium at therapeutic concentrations-we investigated the role of GSK3ß in Deaf1 regulation of human 5-HT1A transcription. In 5-HT1A promoter-reporter assays, human HEK293 kidney and 5-HT1A-expressing SKN-SH neuroblastoma cells, transfection of Deaf1 reduced 5-HT1A promoter activity by ~45%. To identify potential GSK3ß site(s) on Deaf1, point mutations of known and predicted phosphorylation sites on Deaf1 were tested. Deaf1 repressor function was not affected by any of the mutants tested except the Y300F mutant, which augmented Deaf1 repression. Both lithium and the selective GSK3 inhibitors CHIR-99021 and AR-014418 attenuated and reversed Deaf1 repression compared to vector. This inhibition was at concentrations that maximally inhibit GSK3ß activity as detected by the GSK3ß-sensitive TCF/LEF reporter construct. Our results support the hypothesis that GSK3ß regulates the activity of Deaf1 to repress 5-HT1A transcription and provide a potential mechanism for actions of GSK3 inhibitors on behavior.


Assuntos
Glicogênio Sintase Quinase 3 beta , Lítio , Receptor 5-HT1A de Serotonina , Serotonina , Humanos , Antidepressivos , Glicogênio Sintase Quinase 3 beta/genética , Células HEK293 , Lítio/farmacologia , Receptor 5-HT1A de Serotonina/genética , Serotonina/farmacologia
3.
J Neurosci ; 39(8): 1334-1346, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30552180

RESUMO

Selective serotonin (5-HT) reuptake inhibitors (SSRIs) are first-line antidepressants but require several weeks to elicit their actions. Chronic SSRI treatment induces desensitization of 5-HT1A autoreceptors to enhance 5-HT neurotransmission. Mice (both sexes) with gene deletion of 5-HT1A autoreceptors in adult 5-HT neurons (1AcKO) were tested for response to SSRIs. Tamoxifen-induced recombination in adult 1AcKO mice specifically reduced 5-HT1A autoreceptor levels. The 1AcKO mice showed a loss of 5-HT1A autoreceptor-mediated hypothermia and electrophysiological responses, but no changes in anxiety- or depression-like behavior. Subchronic fluoxetine (FLX) treatment induced an unexpected anxiogenic effect in 1AcKO mice in the novelty suppressed feeding and elevated plus maze tests, as did escitalopram in the novelty suppressed feeding test. No effect was seen in wild-type (WT) mice. Subchronic FLX increased 5-HT metabolism in prefrontal cortex, hippocampus, and raphe of 1AcKO but not WT mice, suggesting hyperactivation of 5-HT release. To detect chronic cellular activation, FosB+ cells were quantified. FosB+ cells were reduced in entorhinal cortex and hippocampus (CA2/3) and increased in dorsal raphe 5-HT cells of 1AcKO mice, suggesting increased raphe activation. In WT but not 1AcKO mice, FLX reduced FosB+ cells in the median raphe, hippocampus, entorhinal cortex, and median septum, which receive rich 5-HT projections. Thus, in the absence of 5-HT1A autoreceptors, SSRIs induce a paradoxical anxiogenic response. This may involve imbalance in activation of dorsal and median raphe to regulate septohippocampal or fimbria-fornix pathways. These results suggest that markedly reduced 5-HT1A autoreceptors may provide a marker for aberrant response to SSRI treatment.SIGNIFICANCE STATEMENT Serotonin-selective reuptake inhibitors (SSRIs) are effective in treating anxiety and depression in humans and mouse models. However, in some cases, SSRIs can increase anxiety, but the mechanisms involved are unclear. Here we show that, rather than enhancing SSRI benefits, adulthood knockout (KO) of the 5-HT1A autoreceptor, a critical negative regulator of 5-HT activity, results in an SSRI-induced anxiety effect that appears to involve a hyperactivation of the 5-HT system in certain brain areas. Thus, subjects with very low levels of 5-HT1A autoreceptors, such as during childhood or adolescence, may be at risk for an SSRI-induced anxiety response.


Assuntos
Antidepressivos/efeitos adversos , Ansiedade/induzido quimicamente , Autorreceptores/efeitos dos fármacos , Receptor 5-HT1A de Serotonina/deficiência , Inibidores Seletivos de Recaptação de Serotonina/efeitos adversos , Neurônios Serotoninérgicos/efeitos dos fármacos , 8-Hidroxi-2-(di-n-propilamino)tetralina/toxicidade , Animais , Antidepressivos/farmacologia , Química Encefálica/efeitos dos fármacos , Comportamento Exploratório/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Feminino , Fluoxetina/efeitos adversos , Fluoxetina/farmacologia , Hipotermia/induzido quimicamente , Hipotermia/fisiopatologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Rede Nervosa/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/análise , Receptor 5-HT1A de Serotonina/efeitos dos fármacos , Receptor 5-HT1A de Serotonina/fisiologia , Neurônios Serotoninérgicos/fisiologia , Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Natação
4.
J Neurosci ; 38(38): 8200-8210, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30093565

RESUMO

The serotonin-1A (5-HT1A) receptor is a key regulator of serotonergic activity and is implicated in mood and emotion. However, its post-transcriptional regulation has never been studied in humans. In the present study, we show that the "intronless" human 5-HT1A gene (HTR1A) is alternatively spliced in its 3'-UTR, yielding two novel splice variants. These variants lack a ∼1.6 kb intron, which contains an microRNA-135 (miR135) target site. Unlike the human HTR1A, the mouse HTR1A lacks the splice donor/accepter sites. Thus, in the mouse HTR1A, splicing was not detected. The two spliced mRNAs are extremely stable, are resistant to miR135-induced downregulation, and have greater translational output than the unspliced variant. Moreover, alternative HTR1A RNA splicing is oppositely regulated by the splice factors PTBP1 and nSR100, which inhibit or enhance its splicing, respectively. In postmortem human brain tissue from both sexes, HTR1A mRNA splicing was prevalent and region-specific. Unspliced HTR1A was expressed more strongly in the hippocampus and midbrain versus the prefrontal cortex (PFC), and correlated with reduced levels of nSR100. Importantly, HTR1A RNA splicing and nSR100 levels were reduced in the PFC of individuals with major depression compared with controls. Our unexpected findings uncover a novel mechanism to regulate HTR1A gene expression through alternative splicing of microRNA sites. Altered levels of splice factors could contribute to changes in regional and depression-related gene expression through alternative splicing.SIGNIFICANCE STATEMENT Alternative splicing, which is prevalent in brain tissue, increases gene diversity. The serotonin-1A receptor gene (HTR1A) is a regulator of serotonin, which is implicated in mood and emotion. Here we show that human HTR1A RNA is alternately spliced. Splicing removes a microRNA site to generate ultrastable RNA and increase HTR1A expression. This splicing varies in different brain regions and is reduced in major depression. We also identify specific splice factors for HTR1A RNA, showing they are also reduced in depression. Thus, we describe a novel mechanism to regulate gene expression through splicing. Altered levels of splice factors could contribute to depression by changing gene expression.


Assuntos
Processamento Alternativo , Transtorno Depressivo Maior/metabolismo , Hipocampo/metabolismo , Mesencéfalo/metabolismo , Estabilidade de RNA/fisiologia , Receptor 5-HT1A de Serotonina/metabolismo , Adulto , Transtorno Depressivo Maior/genética , Feminino , Células HEK293 , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Receptor 5-HT1A de Serotonina/genética
5.
J Biol Chem ; 288(34): 24569-80, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-23846693

RESUMO

Double-stranded (ds) RNA of viral origin, a ligand for Melanoma Differentiation-associated gene 5 (MDA5) and Toll-Like Receptor 3 (TLR3), induces the TANK-Binding Kinase 1 (TBK1)-dependent phosphorylation and activation of Interferon Regulatory Factor 3 (IRF3) and the E3 ubiquitin ligase Pellino1, which are required for interferon ß (IFNß) gene transcription. Here, we report that Pellino1 interacts with the transcription factor Deformed Epidermal Autoregulatory Factor 1 (DEAF1). The interaction is independent of the E3 ligase activity of Pellino1, but weakened by the phosphorylation of Pellino1. We show that DEAF1 binds to the IFNß promoter and to IRF3 and IRF7, that it is required for the transcription of the IFNß gene and IFNß secretion in MEFs infected with Sendai virus or transfected with poly(I:C). DEAF1 is also needed for TLR3-dependent IFNß production. Taken together, our results identify DEAF1 as a novel component of the signal transduction network by which dsRNA of viral origin stimulates IFNß production.


Assuntos
Interferon beta/biossíntese , Proteínas Nucleares/metabolismo , RNA de Cadeia Dupla/farmacologia , Infecções por Respirovirus/metabolismo , Vírus Sendai/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Proteínas de Ligação a DNA , Células HEK293 , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Helicase IFIH1 Induzida por Interferon , Interferon beta/genética , Camundongos , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Infecções por Respirovirus/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética , Ubiquitina-Proteína Ligases/genética
6.
Eur J Pharmacol ; 706(1-3): 84-91, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23510743

RESUMO

The 5-Hydroxytriptamine 1A receptor (5-HT1A) is expressed both as a pre- and post-synaptic receptor in neurons. The presynaptic receptor preferentially desensitizes compared to post-synaptic receptors, suggesting different underlying mechanisms of agonist-induced desensitization. Using F11 cells as a model of post-synaptic neurons, the present study examined the role of protein kinase C (PKC) and protein kinase A (PKA) in desensitization of the 5-HT1A-receptor by agonist. Desensitization in whole cell experiments was dependent on internal [Ca(2+)] and was blocked by chelation of intracellular Ca(2+). Using the perforated patch technique, desensitization was reduced when Ba(2+) was used as the conducting cation. Selective inhibitors of conventional PKC isoforms prevented 5-HT-induced desensitization, whereas an inhibitor of PKA did not. In cells in which 3 PKC/PKA sites located in the third intracellular loop (i3) of the 5-HT1A receptor were mutated (i3, T229A-S253G-T343A), 5-HT-mediated desensitization was reduced (and abolished in the absence of intracellular Ca(2+)). In cells in which a fourth mutation was added (T149 in the second i2 loop), the cells responded similarly to the triple mutants suggesting that phosphorylation of T149 does not contribute greatly to the desensitization induced by 5-HT-mediated activation of PKC. Thus agonist-induced uncoupling of the 5-HT1A-receptor is PKC-dependent, but requires a different set of phosphorylation sites than phorbol ester-mediated PKC activation, suggesting differential recruitment of PKC. Furthermore, these studies reveal that 5-HT1A-receptor desensitization utilizes a different kinase in F11 cells and serotonergic neurons, which may in part account for their differential sensitivity in vivo.


Assuntos
Canais de Cálcio/fisiologia , Proteína Quinase C/fisiologia , Receptor 5-HT1A de Serotonina/fisiologia , Animais , Bário/farmacologia , Cálcio/farmacologia , Carbazóis/farmacologia , Linhagem Celular Tumoral , Camundongos , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Ratos , Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia
7.
J Biol Chem ; 287(29): 24195-206, 2012 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-22628545

RESUMO

Chronic stress is a risk factor for psychiatric illnesses, including depressive disorders, and is characterized by increased blood glucocorticoids and brain monoamine oxidase A (MAO A, which degrades monoamine neurotransmitters). This study elucidates the relationship between stress-induced MAO A and the transcription factor Kruppel-like factor 11 (KLF11, also called TIEG2, a member of the Sp/KLF- family), which inhibits cell growth. We report that 1) a glucocorticoid (dexamethasone) increases KLF11 mRNA and protein levels in cultured neuronal cells; 2) overexpressing KLF11 increases levels of MAO A mRNA and enzymatic activity, which is further enhanced by glucocorticoids; in contrast, siRNA-mediated KLF11 knockdown reduces glucocorticoid-induced MAO A expression in cultured neurons; 3) induction of KLF11 and translocation of KLF11 from the cytoplasm to the nucleus are key regulatory mechanisms leading to increased MAO A catalytic activity and mRNA levels because of direct activation of the MAO A promoter via Sp/KLF-binding sites; 4) KLF11 knockout mice show reduced MAO A mRNA and catalytic activity in the brain cortex compared with wild-type mice; and 5) exposure to chronic social defeat stress induces blood glucocorticoids and activates the KLF11 pathway in the rat brain, which results in increased MAO A mRNA and enzymatic activity. Thus, this study reveals for the first time that KLF11 is an MAO A regulator and is produced in response to neuronal stress, which transcriptionally activates MAO A. The novel glucocorticoid-KLF11-MAO A pathway may play a crucial role in modulating distinct pathophysiological steps in stress-related disorders.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Monoaminoxidase/metabolismo , Proteínas Repressoras/metabolismo , Animais , Proteínas Reguladoras de Apoptose , Western Blotting , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Células Cultivadas , Imunoprecipitação da Cromatina , Cromatografia Líquida de Alta Pressão , Corticosterona/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dexametasona/metabolismo , Imunofluorescência , Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Knockout , Monoaminoxidase/genética , Radioimunoensaio , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Repressoras/genética , Serotonina/metabolismo , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Cell Mol Neurobiol ; 32(4): 517-21, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22328058

RESUMO

Nuclear deformed epidermal autoregulatory factor-1 (NUDR/Deaf-1) and five prime repressor element under dual repression (Freud-1) are novel transcriptional regulators of the 5-HT(1A) receptor, a receptor that has been implicated in the pathophysiology of various psychiatric illnesses. The antidepressant effect of 17ß-Estradiol (17ßE(2)) is purported to involve the downregulation of this receptor. We investigated the possible role of NUDR and Freud-1 in 17ßE(2)-induced downregulation of the 5-HT(1A) receptor in the neuroblastoma cell line SH SY5Y. Cells were treated with 10 nM of 17ßE(2) for 3 or 48 h, followed by a 24-h withdrawal period. Proteins were isolated and analyzed by western blotting. 17ßE(2) treatment increased NUDR immunoreactivity while Freud-1 and the 5-HT(1A) receptor showed significant decreases. Upon withdrawal of 17ßE(2), protein expression returned to control levels, except for NUDR, which remained significantly elevated in the 3-h treatment. Taken together, these data support a non-genomic downregulation of 5-HT(1A) receptor protein by 17ßE(2), which does not involve NUDR and Freud-1. Rather, changes in both transcription factors seem to be compensatory/homeostatic responses to changes in 5-HT(1A) receptor induced by 17ßE(2). These observations further highlight the importance of NUDR and Freud-1 in regulating 5-HT(1A) receptor expression.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Transtorno Depressivo/metabolismo , Estradiol/fisiologia , Proteínas Nucleares/metabolismo , Receptor 5-HT1A de Serotonina/genética , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Transtorno Depressivo/genética , Transtorno Depressivo/patologia , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Humanos , Neuroblastoma , Proteínas Nucleares/genética , Fatores de Transcrição
9.
FEBS J ; 279(4): 650-60, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22177524

RESUMO

The signaling switch of ß2-adrenergic and µ(1) -opioid receptors from stimulatory G-protein (G(αs) ) to inhibitory G-protein (G(αi) ) (and vice versa) influences adenylyl cyclase (AC) and extracellular-regulated kinase (ERK)1/2 activation. Post-translational modifications, including dephosphorylation of G(αs) , enhance opioid receptor coupling to G(αs) . In the present study, we substituted the Ser/Thr residues of G(αs) at the α3/ß5 and α4/ß6 loops aiming to study the role of G(αs) lacking Ser/Thr phosphorylation with respect to AC sensitization and mitogen-activated protein kinase activation. Isoproterenol increased the cAMP concentration (EC(50) = 22.8 ± 3.4 µm) in G(αs) -transfected S49 cyc- cells but not in nontransfected cells. However, there was no significant difference between the G(αs) -wild-type (wt) and mutants. Morphine (10 µm) inhibited AC activity more efficiently in cyc- compared to G(αs) -wt introduced cells (P < 0.05); however, we did not find a notable difference between G(αs) -wt and mutants. Interestingly, G(αs) -wt transfected cells showed more sensitization with respect to AC after chronic morphine compared to nontransfected cells (101 ± 12% versus 34 ± 6%; P < 0.001); µ1-opioid receptor interacted with G(αs) , and both co-immunoprecipitated after chronic morphine exposure. Furthermore, mutation of T270A and S272A (P < 0.01), as well as T270A, S272A and S261A (P < 0.05), in α3/ß5, resulted in a higher level of AC supersensitization. ERK1/2 phosphorylation was rapidly induced by isoproterenol (by 9.5 ± 2.4-fold) and morphine (22 ± 2.2-fold) in G(αs) -transfected cells; mutations of α3/ß5 and α4/ß6 did not affect the pattern or extent of mitogen-activated protein kinase activation. The findings of the present study show that G(αs) interacts with the µ1-opioid receptor, and the Ser/Thr mutation to Ala at the α3/ß5 loop of G(αs) enhances morphine-induced AC sensitization. In addition, G(αs) was required for the rapid phosphorylation of ERK1/2 by isoproterenol but not morphine.


Assuntos
Adenilil Ciclases/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Morfina/farmacologia , Inibidores de Adenilil Ciclases , Agonistas Adrenérgicos beta/farmacologia , Analgésicos Opioides/farmacologia , Animais , Western Blotting , Linhagem Celular Tumoral , AMP Cíclico/metabolismo , Ativação Enzimática/efeitos dos fármacos , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Imunoprecipitação , Isoproterenol/farmacologia , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Mutação , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Receptores Adrenérgicos beta 2/metabolismo , Receptores Opioides mu/metabolismo , Serina/genética , Serina/metabolismo , Treonina/genética , Treonina/metabolismo , Transfecção
10.
J Neurochem ; 116(6): 1066-76, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21182526

RESUMO

Serotonin (5-hydroxytryptamine, 5-HT) neurotransmission is negatively regulated by 5-HT1A autoreceptors on raphe neurons, and is implicated in mood disorders. Pet-1/FEV is an ETS transcription factor expressed exclusively in serotonergic neurons and is essential for serotonergic differentiation, although its regulation of 5-HT receptors has not yet been studied. Here, we show by electrophoretic mobility shift assay that recombinant human Pet-1/FEV binds directly to multiple Pet-1 elements of the human 5-HT1A receptor promoter to enhance its transcriptional activity. In luciferase reporter assays, mutational analysis indicated that while several sites contribute, the Pet-1 site at -1406 bp had the greatest effect on 5-HT1A promoter activity. To address the effect of Pet-1 on 5-HT1A receptor regulation in vivo, we compared the expression of 5-HT1A receptor RNA and protein in Pet-1 null and wild-type littermate mice. In the raphe nuclei of Pet-1-/- mice tryptophan hydroxylase 2 (TPH2) RNA, and 5-HT and TPH immunostaining were greatly reduced, indicating a deficit in 5-HT production. Raphe 5-HT1A RNA and protein levels were also reduced in Pet-1-deficient mice, consistent with an absence of Pet-1-mediated transcriptional enhancement of 5-HT1A autoreceptors in serotonergic neurons. Interestingly, 5-HT1A receptor expression was up-regulated in the hippocampus, but down-regulated in the striatum and cortex. These data indicate that, in addition to transcriptional regulation by Pet-1 in raphe neurons, 5-HT1A receptor expression is regulated indirectly by alterations in 5-HT neurotransmission in a region-specific manner that together may contribute to the aggressive/anxiety phenotype observed in Pet-1 null mice.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica/fisiologia , Receptor 5-HT1A de Serotonina/metabolismo , Fatores de Transcrição/fisiologia , Análise de Variância , Animais , Encéfalo/anatomia & histologia , Linhagem Celular Transformada , Linhagem Celular Tumoral , Ensaio de Desvio de Mobilidade Eletroforética , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Camundongos Knockout , Neuroblastoma , Regiões Promotoras Genéticas/fisiologia , RNA Mensageiro/metabolismo , Ratos , Receptor 5-HT1A de Serotonina/genética , Fatores de Transcrição/deficiência , Transfecção/métodos , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo
11.
J Cell Physiol ; 225(3): 865-74, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20607800

RESUMO

Galpha(i)-coupled receptors comprise a diverse family of receptors that induce transformation by largely unknown mechanisms. We previously found that the Galpha(i)-coupled dopamine-D2short (D2S) receptor transforms Balb-D2S cells via Gαi3. To identify new Gαi effectors, a yeast two-hybrid screen was done using constitutively active Gαi3-Q204L as bait, and tumor necrosis factor-alpha (TNFα)-induced protein 8 (TNFAIP8, SCC-S2/NDED/GG2-1) was identified. In contrast, TNFAIP8-related TIPE1 and TIPE2 showed a very weak interaction with Gαi3. In yeast mating, in vitro pull-down, co-immunoprecipitation and bioluminescence resonance energy transfer (BRET) assays, TNFAIP8 preferentially interacted with activated Gαi proteins, consistent with direct Gαi-TNFAIP8 coupling. Over-expression or depletion of TNFAIP8 using antisense constructs in Balb-D2S cells did not affect D2S-induced signaling to Gαi-dependent inhibition of cAMP. In contrast, antisense depletion of TNFAIP8 completely inhibited spontaneous and D2S-induced foci formation, consistent with a role for TNFAIP8 in Gαi-dependent transformation. To address possible mechanisms, the effect of D2S signaling via TNFAIP8 on TNFα action was examined. D2S receptor activation inhibited TNFα-induced cell death in Balb-D2S cells, but not in cells depleted of TNFAIP8. However, depletion of TNFAIP8 did not prevent D2S-induced inhibition of TNFα-mediated caspase activation, suggesting that D2S/TNFAIP8-induced protection from TNFα-induced cell death is caspase-independent. The data suggest that Gαi-TNFAIP8-mediated rescue of pre-oncogenic cells enhances progression to oncogenic transformation, providing a selective target to inhibit cellular transformation.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Transformação Celular Neoplásica/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Proteínas Reguladoras de Apoptose/genética , Células 3T3 BALB , Caspases/metabolismo , Morte Celular , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Transferência Ressonante de Energia de Fluorescência , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Humanos , Imunoprecipitação , Camundongos , Dados de Sequência Molecular , Células NIH 3T3 , Oligonucleotídeos Antissenso/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Transfecção , Fator de Necrose Tumoral alfa/metabolismo , Técnicas do Sistema de Duplo-Híbrido
12.
Biol Psychiatry ; 66(3): 214-22, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19423080

RESUMO

BACKGROUND: Altered expression of serotonin-1A (5-HT1A) receptors, both presynaptic in the raphe nuclei and post-synaptic in limbic and cortical target areas, has been implicated in mood disorders such as major depression and anxiety. Within the 5-HT1A receptor gene, a powerful dual repressor element (DRE) is regulated by two protein complexes: Freud-1/CC2D1A and a second, unknown repressor. Here we identify human Freud-2/CC2D1B, a Freud-1 homologue, as the second repressor. METHODS: Freud-2 distribution was examined with Northern and Western blot, reverse transcriptase polymerase chain reaction, and immunohistochemistry/immunofluorescence; Freud-2 function was examined by electrophoretic mobility shift, reporter assay, and Western blot. RESULTS: Freud-2 RNA was widely distributed in brain and peripheral tissues. Freud-2 protein was enriched in the nuclear fraction of human prefrontal cortex and hippocampus but was weakly expressed in the dorsal raphe nucleus. Freud-2 immunostaining was co-localized with 5-HT1A receptors, neuronal and glial markers. In prefrontal cortex, Freud-2 was expressed at similar levels in control and depressed male subjects. Recombinant hFreud-2 protein bound specifically to 5' or 3' human DRE adjacent to the Freud-1 site. Human Freud-2 showed strong repressor activity at the human 5-HT1A or heterologous promoter in human HEK-293 5-HT1A-negative cells and neuronal SK-N-SH cells, a model of postsynaptic 5-HT1A receptor-positive cells. Furthermore, small interfering RNA knockdown of endogenous hFreud-2 expression de-repressed 5-HT1A promoter activity and increased levels of 5-HT1A receptor protein in SK-N-SH cells. CONCLUSIONS: Human Freud-2 binds to the 5-HT1A DRE and represses the human 5-HT1A receptor gene to regulate its expression in non-serotonergic cells and neurons.


Assuntos
Encéfalo/metabolismo , Proteínas de Ligação a DNA/fisiologia , Regulação para Baixo/fisiologia , Receptor 5-HT1A de Serotonina/metabolismo , Proteínas Repressoras/fisiologia , Adulto , Encéfalo/patologia , Linhagem Celular Transformada , Linhagem Celular Tumoral , Clonagem Molecular/métodos , Proteínas de Ligação a DNA/genética , Transtorno Depressivo Maior/patologia , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Ensaio de Desvio de Mobilidade Eletroforética/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/metabolismo , Neuroblastoma , Mudanças Depois da Morte , Regiões Promotoras Genéticas , Ligação Proteica , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/farmacologia , Receptor 5-HT1A de Serotonina/genética , Transfecção
13.
Neurobiol Dis ; 29(1): 117-22, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17890097

RESUMO

The orphan nuclear receptor NURR1 is critical for the development of mesencephalic dopamine neurons and directly regulates tyrosine hydroxylase (TH) via specific NGFI-B response elements (NBRE). We identified a Parkinson's disease patient with a NURR1 mutation, resulting in a p.Ser125Cys change, immediately adjacent to the putative ERK1/2 phosphorylation site. Here we show, in dopaminergic SK-N-AS human neuroblastoma cells, that this substitution markedly attenuated NURR1-induced transcriptional activation through a human TH promoter NBRE. Furthermore, in SK-N-AS cells co-transfected with the dopamine-D2S receptor and NURR1, the dopamine-D2 agonist quinpirole stimulated ERK1/2 phosphorylation and enhanced transcriptional activation by wild-type NURR1 but not the p.Ser125Cys NURR1 mutant, and these actions were blocked by the specific MEK1/2 inhibitor PD98059. These results indicate that Ser125 is critical for basal and ERK1/2-induced NURR1 activity and suggest a role for this and other NURR1 mutations in the regulation of dopamine synthesis and predisposition to Parkinson's disease.


Assuntos
Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica/genética , Proteína Quinase 3 Ativada por Mitógeno/fisiologia , Mutação/fisiologia , Fatores de Transcrição/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Linhagem Celular Transformada , Cisteína/genética , Agonistas de Dopamina/farmacologia , Interações Medicamentosas , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Neuroblastoma/patologia , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares , Quimpirol/farmacologia , Serina/genética , Transfecção/métodos
14.
J Neurochem ; 102(6): 1796-1804, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17767702

RESUMO

Although they have distinct functions, the signaling of dopamine-D(2) receptor short and long isoforms (D(2)S and D(2)L) is virtually identical. We compared inhibitory regulation of extracellular signal-regulated kinases (ERK1/2) in GH4 pituitary cells separately transfected with these isoforms. Activation of rat or human dopamine-D(2)S, muscarinic or somatostatin receptors inhibited thyrotropin-releasing hormone-induced ERK1/2 phosphorylation, while the D(2)L receptor failed to inhibit this response. In order to address the structural basis for the differential signaling of D(2)S and D(2)L receptors, we examined the D(2)L-SS mutant, in which a protein kinase C (PKC) pseudosubstrate site that is present in the D(2)L but not D(2)S receptor was converted to a consensus PKC site. In transfected GH4 cells, the D(2)L-SS mutant inhibited thyrotropin-releasing hormone-induced ERK1/2 phosphorylation almost as strongly as the D(2)S receptor. A D(2)S-triple mutant that eliminates PKC sites involved in D(2)S receptor desensitization also inhibited ERK1/2 activation. Similarly, in striatal cultures, the D(2)-selective agonist quinpirole inhibited potassium-stimulated ERK1/2 phosphorylation, indicating the presence of this pathway in neurons. In conclusion, the D(2)S and D(2)L receptors differ in inhibitory signaling to ERK1/2 due to specific residues in the D(2)L receptor alternatively spliced domain, which may account for differences in their function in vivo.


Assuntos
Dopamina/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Neurônios/metabolismo , Receptores de Dopamina D2/metabolismo , Transdução de Sinais/fisiologia , Processamento Alternativo/genética , Animais , Sítios de Ligação/genética , Linhagem Celular Tumoral , Células Cultivadas , Corpo Estriado/metabolismo , Agonistas de Dopamina/farmacologia , Humanos , Mutação/genética , Neurônios/efeitos dos fármacos , Fosforilação , Hipófise/metabolismo , Isoformas de Proteínas/efeitos dos fármacos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína Quinase C/química , Estrutura Terciária de Proteína/genética , Ratos , Receptores de Dopamina D2/efeitos dos fármacos , Receptores de Dopamina D2/genética , Transdução de Sinais/efeitos dos fármacos , Hormônio Liberador de Tireotropina/metabolismo , Hormônio Liberador de Tireotropina/farmacologia
15.
Neuron ; 55(1): 37-52, 2007 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-17610816

RESUMO

We reported previously that calpain-mediated Cdk5 activation is critical for mitochondrial toxin-induced dopaminergic death. Here, we report a target that mediates this loss. Prx2, an antioxidant enzyme, binds Cdk5/p35. Prx2 is phosphorylated at T89 in neurons treated with MPP+ and/or MPTP in animals in a calpain/Cdk5/p35-dependent manner. This phosphorylation reduces Prx2 peroxidase activity. Consistent with this, p35-/- neurons show reduced oxidative stress upon MPP+ treatment. Expression of Prx2 and Prx2T89A, but not the phosphorylation mimic Prx2T89E, protects cultured and adult neurons following mitochondrial insult. Finally, downregulation of Prx2 increases oxidative stress and sensitivity to MPP+. We propose a mechanistic model by which mitochondrial toxin leads to calpain-mediated Cdk5 activation, reduced Prx2 activity, and decreased capacity to eliminate ROS. Importantly, increased Prx2 phosphorylation also occurs in nigral neurons from postmortem tissue from Parkinson's disease patients when compared to control, suggesting the relevance of this pathway in the human condition.


Assuntos
Quinase 5 Dependente de Ciclina/fisiologia , Proteínas de Homeodomínio/fisiologia , Intoxicação por MPTP/metabolismo , Doença de Parkinson Secundária/metabolismo , Adenoviridae/genética , Sequência de Aminoácidos , Animais , Western Blotting , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/enzimologia , Córtex Cerebral/metabolismo , Técnicas de Transferência de Genes , Proteínas de Homeodomínio/metabolismo , Imuno-Histoquímica , Imunoprecipitação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Neurônios/enzimologia , Neurônios/metabolismo , Doença de Parkinson Secundária/induzido quimicamente , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Substância Negra/citologia , Substância Negra/enzimologia
16.
Semin Cell Dev Biol ; 17(3): 390-9, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16765607

RESUMO

Regulators of G-protein signaling (RGS proteins) comprise over 20 different proteins that have been classified into subfamilies on the basis of structural homology. The RZ/A family includes RGSZ2/RGS17 (the most recently discovered member of this family), GAIP/RGS19, RGSZ1/RGS20, and the RGSZ1 variant Ret-RGS. The RGS proteins are GTPase activating proteins (GAPs) that turn off G-proteins and thus negatively regulate the signaling of G-protein coupled receptors (GPCRs). In addition, some RZ/A family RGS proteins are able to modify signaling through interactions with adapter proteins (such as GIPC and GIPN). The RZ/A proteins have a simple structure that includes a conserved amino-terminal cysteine string motif, RGS box and short carboxyl-terminal, which confer GAP activity (RGS box) and the ability to undergo covalent modification and interact with other proteins (amino-terminal). This review focuses on RGS17 and its RZ/A sibling proteins and discusses the similarities and differences among these proteins in terms of their palmitoylation, phosphorylation, intracellular localization and interactions with GPCRs and adapter proteins. The specificity of these RGS protein for different Galpha proteins and receptors, and the consequences for signaling are discussed. The tissue and brain distribution, and the evolving understanding of the roles of this family of RGS proteins in receptor signaling and brain function are highlighted.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Proteínas RGS , Transdução de Sinais/fisiologia , Animais , Cálcio/metabolismo , Cisteína/química , Proteínas Ativadoras de GTPase/fisiologia , Humanos , Modelos Biológicos , Ácido Palmítico/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas RGS/química , Proteínas RGS/classificação , Proteínas RGS/genética , Proteínas RGS/metabolismo , Proteínas RGS/fisiologia , Frações Subcelulares/metabolismo , Distribuição Tecidual , Ubiquitina/metabolismo
17.
J Neurosci ; 26(6): 1864-71, 2006 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-16467535

RESUMO

The serotonin-1A (5-HT1A) receptor is the primary somatodendritic autoreceptor that inhibits the activity of serotonergic raphe neurons and is also expressed in nonserotonergic cortical and limbic neurons. Alterations in 5-HT1A receptor levels are implicated in mood disorders, and a functional C(-1019)G 5-HT1A promoter polymorphism has been associated with depression, suicide, and panic disorder. We examined the cell-specific activity of identified transcription factors, human nuclear deformed epidermal autoregulatory factor-1 (DEAF-1)-related (NUDR)/Deaf-1 and Hes5, at the 5-HT1A C(-1019) site. In serotonergic raphe RN46A cells, Deaf-1 and Hes5 repressed the 5-HT1A receptor gene at the C(-1019)-allele but not the G(-1019)-allele. However, in nonserotonergic cells that express 5-HT1A receptors (septal SN48, neuroblastoma SKN-SH, and neuroblastoma/glioma NG108-15 cells), Deaf-1 enhanced 5-HT1A promoter activity at the C(-1019)-allele but not the G-allele, whereas Hes5 repressed in all cell types. The enhancer activity of Deaf-1 was orientation independent and competed out Hes5 repression. To test whether Deaf-1 activity is intrinsic, the activity of a Gal4DBD (DNA binding domain)-Deaf-1 fusion protein at a heterologous Gal4 DNA element was examined. Gal4DBD-Deaf-1 repressed transcription in RN46A cells but enhanced transcription in SN48 cells, indicating that these opposite activities are intrinsic to Deaf-1. Repressor or enhancer activities of Deaf-1 or Gal4DBD-Deaf-1 were blocked by histone deacetylase inhibitor trichostatin A. Thus, the intrinsic activity of Deaf-1 at the 5-HT1A promoter is opposite in presynaptic versus postsynaptic neuronal cells and requires deacetylation. Cell-specific regulation by Deaf-1 could underlie region-specific alterations in 5-HT1A receptor expression in different mood disorders.


Assuntos
Proteínas Nucleares/fisiologia , Receptor 5-HT1A de Serotonina/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA , Regulação da Expressão Gênica , Humanos , Transtornos do Humor/genética , Neuroblastoma , Polimorfismo Genético , Fatores de Transcrição , Transfecção
18.
Eur J Neurosci ; 21(3): 721-32, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15733090

RESUMO

The 5-HT1A receptor is expressed presynaptically as the primary somatodendritic autoreceptor on serotonergic raphe neurons, and postsynaptically in several brain regions. Signaling of the 5-HT1A autoreceptor was studied in RN46A cells, a model of serotonergic raphe neurons that express endogenous 5-HT1A receptors. In undifferentiated RN46A cells stably transfected with the wild-type 5-HT1A receptor, 5-HT1A receptor activation inhibited forskolin-induced cyclic adenosine monophosphate (cAMP) formation (by 50%), increased [Ca2+]i, and induced a novel inhibition (up to 60%) of phospho-p42/p44-mitogen-activated protein kinase (MAPK). Upon differentiation of non-transfected or 5-HT1A-transfected RN46A cells, agonist-mediated inhibition of MAPK was enhanced. These actions were blocked by pretreatment with pertussis toxin indicating mediation via Gi/Go proteins and the calcium response was blocked by preactivation of protein kinase C (PKC). In cells overexpressing the G beta gamma scavenger carboxyl-terminal domain of G protein receptor kinase 2 (GRK-CT), 5-HT1A receptor activation inhibited cAMP formation, but coupling to calcium mobilization and inhibition of MAPK was abolished. The activity of 5-HT1A receptors containing mutations of PKC sites in the second (i2: T149A) or third intracellular loop (i3: T229A/S253G/T343A) was tested. At comparable levels of receptor expression, the signaling of the 5-HT1A i3 mutant was similar to the 5-HT1A wild-type receptor, while the i2 and quadruple (i2/i3) mutants failed to couple to G beta gamma-mediated increase in [Ca2+]i or inhibition of MAPK, but did couple to G alpha i-mediated inhibition of cAMP. Thus, the i2-domain of the 5-HT1A autoreceptor is crucial for coupling to G beta gamma subunits and their subsequent responses (e.g. calcium mobilization and inhibition of MAPK activity).


Assuntos
Autorreceptores/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/fisiologia , Subunidades gama da Proteína de Ligação ao GTP/fisiologia , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Receptor 5-HT1A de Serotonina/metabolismo , Transdução de Sinais/fisiologia , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Animais , Autorreceptores/agonistas , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Ratos , Receptor 5-HT1A de Serotonina/fisiologia , Agonistas do Receptor 5-HT1 de Serotonina , Transdução de Sinais/efeitos dos fármacos
19.
Mol Cell Endocrinol ; 214(1-2): 155-65, 2004 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-15062554

RESUMO

Four mutant clones independently derived from the Y1 mouse adrenocortical tumor cell line have adenylyl cyclase (AC) activities that are resistant to forskolin, a direct activator of AC. In this study the AC isoform composition of the forskolin-resistant mutants was examined in order to explore the underlying basis for the resistance to forskolin. As determined by Western blot and RT-PCR analysis, the four forskolin-resistant mutants all were deficient in AC-4; the levels of other AC isoforms (AC-1, AC-3 and AC-5/6) were comparable to the levels in parent Y1 cells. Transfection of one of the mutant clones with an AC-4 expression vector increased forskolin-stimulated cAMP signaling, and restored forskolin-induced changes in cell morphology and growth. Taken together, these observations indicate that AC-4 deficiency is a hallmark of the forskolin-resistant phenotype of these mutants and suggest that AC-4 is an important target of forskolin action in the Y1 adrenal cell line.


Assuntos
Adenilil Ciclases/deficiência , Neoplasias do Córtex Suprarrenal/patologia , Colforsina/farmacologia , Resistência a Medicamentos , Adenilil Ciclases/análise , Adenilil Ciclases/fisiologia , Neoplasias do Córtex Suprarrenal/genética , Animais , Divisão Celular , Linhagem Celular Tumoral , Tamanho Celular , AMP Cíclico/biossíntese , Relação Dose-Resposta a Droga , Camundongos , Mutação , Isoformas de Proteínas/análise , RNA Mensageiro/análise
20.
J Biol Chem ; 279(25): 26314-22, 2004 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-15096504

RESUMO

To identify novel regulators of Galpha(o), the most abundant G-protein in brain, we used yeast two-hybrid screening with constitutively active Galpha(o) as bait and identified a new regulator of G-protein signaling (RGS) protein, RGS17 (RGSZ2), as a novel human member of the RZ (or A) subfamily of RGS proteins. RGS17 contains an amino-terminal cysteine-rich motif and a carboxyl-terminal RGS domain with highest homology to hRGSZ1- and hRGS-Galpha-interacting protein. RGS17 RNA was strongly expressed as multiple species in cerebellum and other brain regions. The interactions between hRGS17 and active forms of Galpha(i1-3), Galpha(o), Galpha(z), or Galpha(q) but not Galpha(s) were detected by yeast two-hybrid assay, in vitro pull-down assay, and co-immunoprecipitation studies. Recombinant RGS17 acted as a GTPase-activating protein (GAP) on free Galpha(i2) and Galpha(o) under pre-steady-state conditions, and on M2-muscarinic receptor-activated Galpha(i1), Galpha(i2), Galpha(i3), Galpha(z), and Galpha(o) in steady-state GTPase assays in vitro. Unlike RGSZ1, which is highly selective for G(z), RGS17 exhibited limited selectivity for G(o) among G(i)/G(o) proteins. All RZ family members reduced dopamine-D2/Galpha(i)-mediated inhibition of cAMP formation and abolished thyrotropin-releasing hormone receptor/Galpha(q)-mediated calcium mobilization. RGS17 is a new RZ member that preferentially inhibits receptor signaling via G(i/o), G(z), and G(q) over G(s) to enhance cAMP-dependent signaling and inhibit calcium signaling. Differences observed between in vitro GAP assays and whole-cell signaling suggest additional determinants of the G-protein specificity of RGS GAP effects that could include receptors and effectors.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP , Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Northern Blotting , Western Blotting , Cálcio/metabolismo , Linhagem Celular , Cisteína/química , Relação Dose-Resposta a Droga , Escherichia coli/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Glutationa Transferase/metabolismo , Humanos , Insetos , Dados de Sequência Molecular , Plasmídeos/metabolismo , Testes de Precipitina , Ligação Proteica , Estrutura Terciária de Proteína , RNA/química , Ratos , Homologia de Sequência de Aminoácidos , Fatores de Tempo , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA