Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arch Toxicol ; 98(4): 1081-1093, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38436695

RESUMO

Large interspecies differences between rats and mice concerning the hepatotoxicity and carcinogenicity of aflatoxin B1 (AFB1) are known, with mice being more resistant. However, a comprehensive interspecies comparison including subcellular liver tissue compartments has not yet been performed. In this study, we performed spatio-temporal intravital analysis of AFB1 kinetics in the livers of anesthetized mice and rats. This was supported by time-dependent analysis of the parent compound as well as metabolites and adducts in blood, urine, and bile of both species by HPLC-MS/MS. The integrated data from intravital imaging and HPLC-MS/MS analysis revealed major interspecies differences between rats and mice: (1) AFB1-associated fluorescence persisted much longer in the nuclei of rat than mouse hepatocytes; (2) in the sinusoidal blood, AFB1-associated fluorescence was rapidly cleared in mice, while a time-dependent increase was observed in rats in the first three hours after injection followed by a plateau that lasted until the end of the observation period of six hours; (3) this coincided with a far stronger increase of AFB1-lysine adducts in the blood of rats compared to mice; (4) the AFB1-guanine adduct was detected at much higher concentrations in bile and urine of rats than mice. In both species, the AFB1-glutathione conjugate was efficiently excreted via bile, where it reached concentrations at least three orders of magnitude higher compared to blood. In conclusion, major differences between mice and rats were observed, concerning the nuclear persistence, formation of AFB1-lysine adducts, and the AFB1-guanine adducts.


Assuntos
Aflatoxinas , Ratos , Camundongos , Animais , Aflatoxinas/metabolismo , Aflatoxinas/toxicidade , Lisina/metabolismo , Espectrometria de Massa com Cromatografia Líquida , Espectrometria de Massas em Tandem , Fígado/metabolismo , Aflatoxina B1/toxicidade , Guanina/metabolismo , Microscopia Intravital
2.
J Hepatol ; 80(2): 268-281, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37939855

RESUMO

BACKGROUND & AIMS: Cholemic nephropathy (CN) is a severe complication of cholestatic liver diseases for which there is no specific treatment. We revisited its pathophysiology with the aim of identifying novel therapeutic strategies. METHODS: Cholestasis was induced by bile duct ligation (BDL) in mice. Bile flux in kidneys and livers was visualized by intravital imaging, supported by MALDI mass spectrometry imaging and liquid chromatography-tandem mass spectrometry. The effect of AS0369, a systemically bioavailable apical sodium-dependent bile acid transporter (ASBT) inhibitor, was evaluated by intravital imaging, RNA-sequencing, histological, blood, and urine analyses. Translational relevance was assessed in kidney biopsies from patients with CN, mice with a humanized bile acid (BA) spectrum, and via analysis of serum BAs and KIM-1 (kidney injury molecule 1) in patients with liver disease and hyperbilirubinemia. RESULTS: Proximal tubular epithelial cells (TECs) reabsorbed and enriched BAs, leading to oxidative stress and death of proximal TECs, casts in distal tubules and collecting ducts, peritubular capillary leakiness, and glomerular cysts. Renal ASBT inhibition by AS0369 blocked BA uptake into TECs and prevented kidney injury up to 6 weeks after BDL. Similar results were obtained in mice with humanized BA composition. In patients with advanced liver disease, serum BAs were the main determinant of KIM-1 levels. ASBT expression in TECs was preserved in biopsies from patients with CN, further highlighting the translational potential of targeting ASBT to treat CN. CONCLUSIONS: BA enrichment in proximal TECs followed by oxidative stress and cell death is a key early event in CN. Inhibiting renal ASBT and consequently BA enrichment in TECs prevents CN and systemically decreases BA concentrations. IMPACT AND IMPLICATIONS: Cholemic nephropathy (CN) is a severe complication of cholestasis and an unmet clinical need. We demonstrate that CN is triggered by the renal accumulation of bile acids (BAs) that are considerably increased in the systemic blood. Specifically, the proximal tubular epithelial cells of the kidney take up BAs via the apical sodium-dependent bile acid transporter (ASBT). We developed a therapeutic compound that blocks ASBT in the kidneys, prevents BA overload in tubular epithelial cells, and almost completely abolished all disease hallmarks in a CN mouse model. Renal ASBT inhibition represents a potential therapeutic strategy for patients with CN.


Assuntos
Proteínas de Transporte , Colestase , Nefropatias , Hepatopatias , Glicoproteínas de Membrana , Transportadores de Ânions Orgânicos Dependentes de Sódio , Simportadores , Humanos , Camundongos , Animais , Colestase/complicações , Colestase/metabolismo , Rim/metabolismo , Simportadores/metabolismo , Ácidos e Sais Biliares/metabolismo , Fígado/metabolismo , Ductos Biliares/metabolismo , Hepatopatias/metabolismo , Sódio
3.
Arch Toxicol ; 97(12): 3179-3196, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37794256

RESUMO

Aflatoxin B1 (AFB1) is a highly hepatotoxic and carcinogenic mycotoxin produced by Aspergillus species. The compound is mainly metabolized in the liver and its metabolism varies between species. The present study quantified relevant AFB1- metabolites formed by mouse, rat, and human primary hepatocytes after treatment with 1 µM and 10 µM AFB1. The use of liquid chromatographic separation coupled with tandem mass spectrometric detection enabled the selective and sensitive determination of phase I and phase II metabolites of AFB1 over incubation times of up to 24 h. The binding of AFB1 to macromolecules was also considered. The fastest metabolism of AFB1 was observed in mouse hepatocytes which formed aflatoxin P1 as a major metabolite and also its glucuronidated form, while AFP1 occurred only in traces in the other species. Aflatoxin M1 was formed in all species and was, together with aflatoxin Q1 and aflatoxicol, the main metabolite in human cells. Effective epoxidation led to high amounts of DNA adducts already 30 min post-treatment, especially in rat hepatocytes. Lower levels of DNA adducts and fast DNA repair were found in mouse hepatocytes. Also, protein adducts arising from reactive intermediates were formed rapidly in all three species. Detoxification via glutathione conjugation and subsequent formation of the N-acetylcysteine derivative appeared to be similar in mice and in rats and strongly differed from human hepatocytes which did not form these metabolites at all. The use of qualitative reference material of a multitude of metabolites and the comparison of hepatocyte metabolism in three species using advanced methods enabled considerations on toxification and detoxification mechanisms of AFB1. In addition to glutathione conjugation, phase I metabolism is strongly involved in the detoxification of AFB1.


Assuntos
Aflatoxina B1 , Aflatoxinas , Humanos , Ratos , Camundongos , Animais , Aflatoxina B1/toxicidade , Cromatografia Líquida de Alta Pressão , Adutos de DNA/metabolismo , Espectrometria de Massas em Tandem , DNA , Aflatoxinas/farmacologia , Aflatoxinas/toxicidade , Fígado , Hepatócitos/metabolismo , Glutationa/metabolismo
4.
Immunity ; 56(7): 1578-1595.e8, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37329888

RESUMO

It is currently not well known how necroptosis and necroptosis responses manifest in vivo. Here, we uncovered a molecular switch facilitating reprogramming between two alternative modes of necroptosis signaling in hepatocytes, fundamentally affecting immune responses and hepatocarcinogenesis. Concomitant necrosome and NF-κB activation in hepatocytes, which physiologically express low concentrations of receptor-interacting kinase 3 (RIPK3), did not lead to immediate cell death but forced them into a prolonged "sublethal" state with leaky membranes, functioning as secretory cells that released specific chemokines including CCL20 and MCP-1. This triggered hepatic cell proliferation as well as activation of procarcinogenic monocyte-derived macrophage cell clusters, contributing to hepatocarcinogenesis. In contrast, necrosome activation in hepatocytes with inactive NF-κB-signaling caused an accelerated execution of necroptosis, limiting alarmin release, and thereby preventing inflammation and hepatocarcinogenesis. Consistently, intratumoral NF-κB-necroptosis signatures were associated with poor prognosis in human hepatocarcinogenesis. Therefore, pharmacological reprogramming between these distinct forms of necroptosis may represent a promising strategy against hepatocellular carcinoma.


Assuntos
Neoplasias Hepáticas , NF-kappa B , Humanos , NF-kappa B/metabolismo , Proteínas Quinases/metabolismo , Necroptose , Inflamação/patologia , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Apoptose
5.
Adv Mater ; 35(1): e2208299, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36239273

RESUMO

A robust and reproducible methodology to prepare stable inorganic nanoparticles with chiral morphology may hold the key to the practical utilization of these materials. An optimized chiral growth method to prepare fourfold twisted gold nanorods is described herein, where the amino acid cysteine is used as a dissymmetry inducer. Four tilted ridges are found to develop on the surface of single-crystal nanorods upon repeated reduction of HAuCl4 , in the presence of cysteine as the chiral inducer and ascorbic acid as a reducing agent. From detailed electron microscopy analysis of the crystallographic structures, it is proposed that the dissymmetry results from the development of chiral facets in the form of protrusions (tilted ridges) on the initial nanorods, eventually leading to a twisted shape. The role of cysteine is attributed to assisting enantioselective facet evolution, which is supported by density functional theory simulations of the surface energies, modified upon adsorption of the chiral molecule. The development of R-type and S-type chiral structures (small facets, terraces, or kinks) would thus be non-equal, removing the mirror symmetry of the Au NR and in turn resulting in a markedly chiral morphology with high plasmonic optical activity.


Assuntos
Nanopartículas , Nanotubos , Cisteína/química , Rotação Ocular , Ouro/química , Nanotubos/química , Nanopartículas/química
6.
Cell Biol Toxicol ; 38(5): 847-864, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34021431

RESUMO

Toxicity is not only a function of damage mechanisms, but is also determined by cellular resilience factors. Glutathione has been reported as essential element to counteract negative influences. The present work hence pursued the question how intracellular glutathione can be elevated transiently to render cells more resistant toward harmful conditions. The antibiotic nitrofurantoin (NFT) was identified to stimulate de novo synthesis of glutathione in the human hepatoma cell line, HepG2, and in primary human hepatocytes. In intact cells, activation of NFT yielded a radical anion, which subsequently initiated nuclear-factor-erythroid 2-related-factor-2 (Nrf2)-dependent induction of glutamate cysteine ligase (GCL). Application of siRNA-based intervention approaches confirmed the involvement of the Nrf2-GCL axis in the observed elevation of intracellular glutathione levels. Quantitative activation of Nrf2 by NFT, and the subsequent rise in glutathione, were similar as observed with the potent experimental Nrf2 activator diethyl maleate. The elevation of glutathione levels, observed even 48 h after withdrawal of NFT, rendered cells resistant to different stressors such as the mitochondrial inhibitor rotenone, the redox cycler paraquat, the proteasome inhibitors MG-132 or bortezomib, or high concentrations of NFT. Repurpose of the antibiotic NFT as activator of Nrf2 could thus be a promising strategy for a transient and targeted activation of the endogenous antioxidant machinery. Graphical abstract.


Assuntos
Glutamato-Cisteína Ligase , Fator 2 Relacionado a NF-E2 , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Bortezomib/farmacologia , Glutamato-Cisteína Ligase/metabolismo , Glutamato-Cisteína Ligase/farmacologia , Glutationa/metabolismo , Hepatócitos/metabolismo , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Nitrofurantoína/metabolismo , Nitrofurantoína/farmacologia , Estresse Oxidativo , Paraquat/metabolismo , Paraquat/farmacologia , Inibidores de Proteassoma/farmacologia , RNA Interferente Pequeno/metabolismo , Rotenona/metabolismo , Rotenona/farmacologia
7.
Arch Toxicol ; 95(2): 573-589, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33106934

RESUMO

The liver plays an important role in xenobiotic metabolism and represents a primary target for toxic substances. Many different in vitro cell models have been developed in the past decades. In this study, we used RNA-sequencing (RNA-Seq) to analyze the following human in vitro liver cell models in comparison to human liver tissue: cancer-derived cell lines (HepG2, HepaRG 3D), induced pluripotent stem cell-derived hepatocyte-like cells (iPSC-HLCs), cancerous human liver-derived assays (hPCLiS, human precision cut liver slices), non-cancerous human liver-derived assays (PHH, primary human hepatocytes) and 3D liver microtissues. First, using CellNet, we analyzed whether these liver in vitro cell models were indeed classified as liver, based on their baseline expression profile and gene regulatory networks (GRN). More comprehensive analyses using non-differentially expressed genes (non-DEGs) and differential transcript usage (DTU) were applied to assess the coverage for important liver pathways. Through different analyses, we noticed that 3D liver microtissues exhibited a high similarity with in vivo liver, in terms of CellNet (C/T score: 0.98), non-DEGs (10,363) and pathway coverage (highest for 19 out of 20 liver specific pathways shown) at the beginning of the incubation period (0 h) followed by a decrease during long-term incubation for 168 and 336 h. PHH also showed a high degree of similarity with human liver tissue and allowed stable conditions for a short-term cultivation period of 24 h. Using the same metrics, HepG2 cells illustrated the lowest similarity (C/T: 0.51, non-DEGs: 5623, and pathways coverage: least for 7 out of 20) with human liver tissue. The HepG2 are widely used in hepatotoxicity studies, however, due to their lower similarity, they should be used with caution. HepaRG models, iPSC-HLCs, and hPCLiS ranged clearly behind microtissues and PHH but showed higher similarity to human liver tissue than HepG2 cells. In conclusion, this study offers a resource of RNA-Seq data of several biological replicates of human liver cell models in vitro compared to human liver tissue.


Assuntos
Biologia Computacional/métodos , Hepatócitos/metabolismo , Neoplasias Hepáticas/metabolismo , Fígado/metabolismo , Transcriptoma , Diferenciação Celular , Linhagem Celular Tumoral , Células Cultivadas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Células Hep G2 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Técnicas In Vitro , Células-Tronco Pluripotentes Induzidas/metabolismo , Modelos Biológicos , RNA-Seq
8.
Arch Toxicol ; 94(11): 3787-3798, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32965549

RESUMO

In cell biology, pharmacology and toxicology dose-response and concentration-response curves are frequently fitted to data with statistical methods. Such fits are used to derive quantitative measures (e.g. EC[Formula: see text] values) describing the relationship between the concentration of a compound or the strength of an intervention applied to cells and its effect on viability or function of these cells. Often, a reference, called negative control (or solvent control), is used to normalize the data. The negative control data sometimes deviate from the values measured for low (ineffective) test compound concentrations. In such cases, normalization of the data with respect to control values leads to biased estimates of the parameters of the concentration-response curve. Low quality estimates of effective concentrations can be the consequence. In a literature study, we found that this problem occurs in a large percentage of toxicological publications. We propose different strategies to tackle the problem, including complete omission of the controls. Data from a controlled simulation study indicate the best-suited problem solution for different data structure scenarios. This was further exemplified by a real concentration-response study. We provide the following recommendations how to handle deviating controls: (1) The log-logistic 4pLL model is a good default option. (2) When there are at least two concentrations in the no-effect range, low variances of the replicate measurements, and deviating controls, control values should be omitted before fitting the model. (3) When data are missing in the no-effect range, the Brain-Cousens model sometimes leads to better results than the default model.


Assuntos
Algoritmos , Técnicas In Vitro , Modelos Estatísticos , Linhagem Celular , Simulação por Computador , Células Hep G2 , Humanos , Modelos Biológicos , Distribuição Normal , Projetos de Pesquisa , Ácido Valproico/análise , Ácido Valproico/toxicidade
9.
Trends Mol Med ; 25(6): 470-481, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31130451

RESUMO

Much progress has been made in establishing strategies for differentiation of induced human pluripotent stem cells (hiPSCs). However, differentiated hiPSCs are not yet routinely used for prediction of toxicity. Here, limiting factors are summarised and possibilities for improvement are discussed, with a focus on hepatocytes, cardiomyocytes, tubular epithelial cells, and developmental toxicity. Moreover, we make recommendations for further fine-tuning of differentiation protocols for hiPSCs to hepatocyte-like cells by comparing individual steps of currently available protocols to the mechanisms occurring during embryonic development. A road map is proposed to facilitate test system development, including a description of the most useful performance metrics.


Assuntos
Diferenciação Celular , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Modelos Animais , Pesquisa , Transplante de Células-Tronco/efeitos adversos , Transplante de Células-Tronco/métodos
10.
EXCLI J ; 18: 1097-1098, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31938028
11.
EXCLI J ; 17: 980-982, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30564077
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA